. 24/7 Space News .
OUTER PLANETS
Science results offer first 3D view of Jupiter's atmosphere
by Staff Writers
Washington DC (SPX) Oct 29, 2021

Jupiter's banded appearance is created by the cloud-forming "weather layer." This composite image shows views of Jupiter in (left to right) infrared and visible light taken by the Gemini North telescope and NASA's Hubble Space Telescope, respectively.

New findings from NASA's Juno probe orbiting Jupiter provide a fuller picture of how the planet's distinctive and colorful atmospheric features offer clues about the unseen processes below its clouds. The results highlight the inner workings of the belts and zones of clouds encircling Jupiter, as well as its polar cyclones and even the Great Red Spot.

Researchers published several papers on Juno's atmospheric discoveries in the journal Science and the Journal of Geophysical Research: Planets. Additional papers appeared in two recent issues of Geophysical Research Letters.

"These new observations from Juno open up a treasure chest of new information about Jupiter's enigmatic observable features," said Lori Glaze, director of NASA's Planetary Science Division at the agency's headquarters in Washington. "Each paper sheds light on different aspects of the planet's atmospheric processes - a wonderful example of how our internationally-diverse science teams strengthen understanding of our solar system."

Juno entered Jupiter's orbit in 2016. During each of the spacecraft's 37 passes of the planet to date, a specialized suite of instruments has peered below its turbulent cloud deck.

"Previously, Juno surprised us with hints that phenomena in Jupiter's atmosphere went deeper than expected," said Scott Bolton, principal investigator of Juno from the Southwest Research Institute in San Antonio and lead author of the Journal Science paper on the depth of Jupiter's vortices. "Now, we're starting to put all these individual pieces together and getting our first real understanding of how Jupiter's beautiful and violent atmosphere works - in 3D."

Juno's microwave radiometer (MWR) allows mission scientists to peer beneath Jupiter's cloud tops and probe the structure of its numerous vortex storms. The most famous of these storms is the iconic anticyclone known as the Great Red Spot. Wider than Earth, this crimson vortex has intrigued scientists since its discovery almost two centuries ago.

The new results show that the cyclones are warmer on top, with lower atmospheric densities, while they are colder at the bottom, with higher densities. Anticyclones, which rotate in the opposite direction, are colder at the top but warmer at the bottom.

The findings also indicate these storms are far taller than expected, with some extending 60 miles (100 kilometers) below the cloud tops and others, including the Great Red Spot, extending over 200 miles (350 kilometers). This surprise discovery demonstrates that the vortices cover regions beyond those where water condenses and clouds form, below the depth where sunlight warms the atmosphere.

The height and size of the Great Red Spot means the concentration of atmospheric mass within the storm potentially could be detectable by instruments studying Jupiter's gravity field. Two close Juno flybys over Jupiter's most famous spot provided the opportunity to search for the storm's gravity signature and complement the MWR results on its depth.

With Juno traveling low over Jupiter's cloud deck at about 130,000 mph (209,000 kph) Juno scientists were able to measure velocity changes as small 0.01 millimeter per second using a NASA's Deep Space Network tracking antenna, from a distance of more than 400 million miles (650 million kilometers). This enabled the team to constrain the depth of the Great Red Spot to about 300 miles (500 kilometers) below the cloud tops.

"The precision required to get the Great Red Spot's gravity during the July 2019 flyby is staggering," said Marzia Parisi, a Juno scientist from NASA's Jet Propulsion Laboratory in Southern California and lead author of a paper in the Journal Science on gravity overflights of the Great Red Spot. "Being able to complement MWR's finding on the depth gives us great confidence that future gravity experiments at Jupiter will yield equally intriguing results."

Belts and Zones
In addition to cyclones and anticyclones, Jupiter is known for its distinctive belts and zones - white and reddish bands of clouds that wrap around the planet. Strong east-west winds moving in opposite directions separate the bands. Juno previously discovered that these winds, or jet streams, reach depths of about 2,000 miles (roughly 3,200 kilometers). Researchers are still trying to solve the mystery of how the jet streams form. Data collected by Juno's MWR during multiple passes reveal one possible clue: that the atmosphere's ammonia gas travels up and down in remarkable alignment with the observed jet streams.

"By following the ammonia, we found circulation cells in both the north and south hemispheres that are similar in nature to 'Ferrel cells,' which control much of our climate here on Earth", said Keren Duer, a graduate student from the Weizmann Institute of Science in Israel and lead author of the Journal Science paper on Ferrel-like cells on Jupiter. "While Earth has one Ferrel cell per hemisphere, Jupiter has eight - each at least 30 times larger."

Juno's MWR data also shows that the belts and zones undergo a transition around 40 miles (65 kilometers) beneath Jupiter's water clouds. At shallow depths, Jupiter's belts are brighter in microwave light than the neighboring zones. But at deeper levels, below the water clouds, the opposite is true - which reveals a similarity to our oceans.

"We are calling this level the 'Jovicline' in analogy to a transitional layer seen in Earth's oceans, known as the thermocline - where seawater transitions sharply from being relative warm to relative cold," said Leigh Fletcher, a Juno participating scientist from the University of Leicester in the United Kingdom and lead author of the paper in the Journal of Geophysical Research: Planets highlighting Juno's microwave observations of Jupiter's temperate belts and zones.

Polar Cyclones
Juno previously discovered polygonal arrangements of giant cyclonic storms at both of Jupiter's poles - eight arranged in an octagonal pattern in the north and five arranged in a pentagonal pattern in the south. Now, five years later, mission scientists using observations by the spacecraft's Jovian Infrared Auroral Mapper (JIRAM) have determined these atmospheric phenomena are extremely resilient, remaining in the same location.

"Jupiter's cyclones affect each other's motion, causing them to oscillate about an equilibrium position," said Alessandro Mura, a Juno co-investigator at the National Institute for Astrophysics in Rome and lead author of a recent paper in Geophysical Research Letters on oscillations and stability in Jupiter's polar cyclones. "The behavior of these slow oscillations suggests that they have deep roots."

JIRAM data also indicates that, like hurricanes on Earth, these cyclones want to move poleward, but cyclones located at the center of each pole push them back. This balance explains where the cyclones reside and the different numbers at each pole.


Related Links
Juno at NASA
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Jupiter's Great Red Spot is deeper than thought, shaped like lens
Washington DC (UPI) Oct 28, 2021
New studies of Jupiter's Great Red Spot released Thursday have found that while the meteorological phenomenon is deeper than originally thought, it's largely shaped like a flat lens about 10,000 miles wide. The vortex storm, the largest of many such spots on Jupiter's surface, extends up to 310 miles below the planet's cloud tops, some 100 miles deeper than previous research indicated. Two groups of scientists published their analyses of data from the Juno spacecraft on the GRS on Thursd ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Making space travel inclusive for all

Russia will fly four tourists into space in 2024

Could Russia's Zeus TEM be a gamechanger for India's space ambitions

New roles, combined offices for NASA Administrator Leadership Team

OUTER PLANETS
NASA seeks input to position mega-rocket for long-term exploration

Crew-3 astronauts launch to Space Station alongside microgravity research

NASA, SpaceX reschedule Crew-3 launch due to weather

NASA sending four astronauts to ISS on Sunday

OUTER PLANETS
You can help train NASA's rovers to better explore Mars

Ingenuity Mars Helicopter Flight 14 Successful

NASA Mars Rover and Helicopter models to go on national tour

China's Mars orbiter resumes communications with Earth

OUTER PLANETS
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

OUTER PLANETS
Geraldine Naja, Director of Commercialisation, Industry and Procurement

NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

Amazon to launch two Project Kuiper satellites next fall

Verizon to use Amazon satellites for broadband Internet in rural areas

OUTER PLANETS
Bio-inspired autonomous materials

AiRANACULUS awarded Phase II NASA contract for Advanced Space Communications System

Shape-shifting materials with infinite possibilities

Smart material switches between heating and cooling in minutes

OUTER PLANETS
Breakthrough Listen releases analysis of previously detected signal

Scientists measure the atmosphere of a planet 340 light-years away

The upside-down orbits of a multi-planetary system

Searching for Earth 2 zoom in on a star

OUTER PLANETS
Science results offer first 3D view of Jupiter's atmosphere

Jupiter's Great Red Spot is deeper than thought, shaped like lens

Using Charon-light Researchers Capture Pluto's Dark Side

Juno peers deep into Jupiter's colorful belts and zones









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.