. 24/7 Space News .
TIME AND SPACE
Science: High pressure orders electrons
by Staff Writers
Karlsruher, Germany (SPX) Dec 06, 2018

To apply controlled pressure to their microscopic superconducting sample (graphics), researchers use sensitive brackets with actuators based on the piezoelectric effect.

High-temperature superconductors can transport electrical energy without resistance. Researchers at Karlsruhe Institute of Technology (KIT) have carried out high-resolution inelastic x-ray scattering and have found that high uniaxial pressure induces a long-range charge order competing with superconductivity. Their study opens up new insights into the behavior of correlated electrons.

Transporting current without losses - superconductors make it possible but only below a certain critical temperature. Conventional superconductors need to be cooled down to almost absolute zero - minus 273 degrees Celsius - and even the so-called high-temperature superconductors still need temperatures of around minus 200 degrees Celsius to transport current without resistance.

Despite this, superconductors are already used in various areas (superconducting magnets, frequency filters, high density power lines). To develop superconductors that work at even higher temperatures - possibly up to room temperature - and therefore significantly contribute to an efficient energy supply, electronic states and processes involved in the formation of the superconducting condensate need to be understood at a fundamental level.

Researchers led by Professor Matthieu Le Tacon, director of the Institute of Solid-State Physics (IFP) at KIT, have now made a significant step forward: they have shown that high uniaxial pressure can be used to tune the competing states in a high-temperature superconductor.

In addition to IFP at KIT, the Max Planck Institute for Solid State Research in Stuttgart, the Max Planck Institute for Chemical Physics of Solids in Dresden, the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, and the Universidad Nacional de la Plata in Argentina took part in the study. The results are presented in the Science journal.

Using high-resolution inelastic x-ray scattering, the scientists examined a high-temperature cuprate superconductor, YBa2Cu3O6.67. In this complex compound, copper and oxygen atoms form two-dimensional structures. Changing the charge carrier concentration in these planes yields a variety of electronic phases including superconductivity and charge orders.

In the charge ordered state, the electrons 'crystallize' into stripe-shaped nanostructures. This electronic state is usually observed in these materials when superconductivity is suppressed using very large magnetic fields, making it hard to investigate using conventional spectroscopic tools.

Inducing this state in YBa2Cu3O6.67 using uniaxial pressure instead of magnetic fields allows to study its relationship to superconductivity using x-ray scattering, as the researchers from Karlsruhe, Stuttgart, Dresden, Grenoble and La Plata discovered in their work. They have in particular been able to identified strong anomalies of the lattice excitation conneted to the formation of the charge order.

"Our results provide new insights into the behavior of electrons in correlated electron materials and into the mechanisms yielding to high-temperature superconductitivity" explains Professor Matthieu Le Tacon from KIT. "They also show that uniaxial pressure has the potential to control the order of the electrons in such materials."

The researchers report on it in the Science journal (DOI: 10.1126/science.aat4708).

Research Report: Uniaxial Pressure Control of Competing Orders in a High Temperature Superconductor


Related Links
Karlsruher Institut fur Technologie (KIT)
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
No longer whistling in the dark: Scientists uncover source of perplexing waves
Plainsboro NJ (SPX) Sep 26, 2018
Magnetic reconnection, the snapping apart and violent reconnection of magnetic field lines in plasma - the state of matter composed of free electrons and atomic nuclei - occurs throughout the universe and can whip up space storms that disrupt cell phone service and knock out power grids. Now scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and other laboratories, using data from a NASA four-satellite mission that is studying reconnection, have develope ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Soyuz arrives at ISS on first manned mission since October failure

ISS Toilet Swarmed By 'Space Bugs' That Could Infect Astronauts - Research

Russia space agency targeted over "stolen" billions

NASA probes 'drug-free' policies, safety at SpaceX, Boeing

TIME AND SPACE
SpaceX's Falcon 9 launches 64 satellites into space

NASA chief says Elon Musk won't be smoking joints publicly again

SpaceX to carry more than 20 new experiments to ISS

Arianespace to launch Indian and Korean GEO satellites

TIME AND SPACE
Over Five Months Without Word From Opportunity

Life at home on Mars in a Big Sandbox

Safely on Mars, InSight unfolds its arrays and snaps some pics

SpaceBok robotic hopper being tested at ESA's Mars Yard

TIME AND SPACE
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

TIME AND SPACE
SAS Signs Distribution Agreement with GlobalSat Group

SpaceX launches pioneering UK maritime communications satellite

ESA's 25 years of telecom: today's challenges and opportunities

Amazon Web Services and Lockheed Martin Team to Make Downlinking Satellite Data Easier and Less Expensive

TIME AND SPACE
World's smallest wearable device warns of UV exposure, enables precision phototherapy

SUTD researchers discover new black silver nanomaterial

Force Push VR brings Jedi powers to life

Easy to use 3D bioprinting technique creates lifelike tissues from natural materials

TIME AND SPACE
Telescopes Reveal More Than 100 Exoplanets

Oxygen could have been available to life as early as 3.5 billion years ago

Exoplanet mission launch slot announced

New Climate Models of TRAPPIST-1's Seven Intriguing Worlds

TIME AND SPACE
The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.