. 24/7 Space News .
STELLAR CHEMISTRY
Sapphires and Rubies in the Sky
by Staff Writers
Zurich, Switzerland (SPX) Dec 21, 2018

Illustration of one of the exotic super-Earth candidates, 55 Cnc e, which are rich in sapphires and rubies and might shimmer in blue and red colors. (Illustration: Thibaut Roger)

21 light-years away from us in the constellation Cassiopeia, a planet orbits its star with a year that is just three days long. Its name is HD219134 b. With a mass almost five times that of Earth it is a so-called "super-Earth." Unlike Earth, however, it most likely does not have a massive core of iron, but is rich in calcium and aluminum.

"Perhaps it shimmers red to blue like rubies and sapphires, because these gemstones are aluminum oxides which are common on the exoplanet," says Caroline Dorn, astrophysicist at the Institute for Computational Science of the University of Zurich. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets, as Caroline Dorn and her colleagues at the Universities of Zurich and Cambridge now report in the British journal MNRAS.

The researchers study the formation of planets using theoretical models and compare their results with data from observations. It is known that during their formation, stars such as the Sun were surrounded by a disk of gas and dust in which planets were born. Rocky planets like Earth were formed out of the solid bodies left over when the proto-planetary gas disk dispersed. These building blocks condensed out of the nebula gas as the disk cooled.

"Normally, these building blocks are formed in regions where rock-forming elements such as iron, magnesium, and silicon have condensed," explains Dorn who is associated to the NCCR PlanetS. The resulting planets have an Earth-like composition with an iron core. Most of the super-Earths known so far have been formed in such regions.

The composition of super-Earths is more diverse than expected

But there are also regions close to the star where it is much hotter. "There, many elements are still in the gas phase and the planetary building blocks have a completely different composition," says the astrophysicist. With their models, the research team calculated what a planet being formed in such a hot region should look like. Their result: calcium and aluminum are the main constituents alongside magnesium and silicon, and there is hardly any iron.

"This is why such planets cannot, for example, have a magnetic field like the Earth," says Dorn. And because the inner structure is so different, their cooling behavior and atmospheres will also differ from those of normal super-Earths. The team therefore speak of a new, exotic class of super-Earths formed from high-temperature condensates.

"What is exciting is that these objects are completely different from the majority of Earth-like planets," says Dorn - "if they actually exist." The probability is high, as the astrophysicists explain in their paper. "In our calculations we found that these planets have 10-20% lower densities than the Earth," explains the first author. Other exoplanets with similarly low-densities were also analyzed by the team.

"We looked at different scenarios to explain the observed densities," says Dorn. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3000 and they would have lost this gas envelope long ago.

"On HD219134 b it's less hot and the situation is more complicated," explains Dorn. At first glance, the lower density could also be explained by deep oceans. But a second planet orbiting the star a little further out makes this scenario unlikely. A comparison of the two objects showed that the inner planet cannot contain more water or gas than the outer one. It is still unclear whether magma oceans can contribute to the lower density.

"So, we have found three candidates that belong to a new class of super-Earths with this exotic composition," the astrophysicist summarizes. The researchers are also correcting an earlier image of super-Earth 55 Cancri e, which had made Sapphires and Rubies in the Skys in 2012 as the "diamond in the sky." Researchers had previously assumed that the planet consisted largely of carbon, but had to abandon this theory on the basis of subsequent observations. "We are turning the supposed diamond planet into a sapphire planet," laughs Dorn.

Research Report: "A New Class of Super-Earths Formed from High-temperature Condensates: HD219134 b, 55 Cnc e, WASP-47 e"


Related Links
University Of Zurich
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
NEOWISE satellite observes adolescent star going through a growth spurt
Washington (UPI) Dec 19, 2018
New images captured by NASA's NEOWISE satellite revealed a pattern of brightening emanating from a newfound star named Gaia 17bpi. The brightening suggests the young star is experiencing a growth spurt. NEOWISE's observation reflect those made by European Space Agency's Gaia satellite, the spacecraft that first identified the star. The two datasets collected by Gaia and NEOWISE suggest the stellar object belongs to a class of stars that gains mass as material swirling around it is pulled inward ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA astronaut, crewmates return to Earth after 197-Day mission in space

Queen guitarist Brian May releases tribute to NASA spacecraft

Astronauts land from ISS stint marred by air leak, rocket failure

NASA thanks Russia for prompt crew rescue after Soyuz accident

STELLAR CHEMISTRY
NZ-Dutch space startup raises 3M dollars

Elon Musk's SpaceX set to raise $500 mn: report

Russia to Decommission Carrier Vehicle With Ukraine-Made Components

Russia's Vostochny Cosmodrome to Have Only One Space Launch in 2019

STELLAR CHEMISTRY
InSight places its first instrument on Mars

InSight Engineers Have Made a Martian Rock Garden

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

STELLAR CHEMISTRY
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

STELLAR CHEMISTRY
Scaled back OneWeb constellation Not to affect number of Soyuz boosters

Spacecraft Repo Operations

Update from ESA Council, December 2018

CAT rules in favour of Ofcom's EAN authorisation decision

STELLAR CHEMISTRY
Raytheon awarded $114M for AN/SPY-6V radar integration, production

Celestia wins major ESA contract for UK

System monitors radiation damage to materials in real-time

New megalibrary approach proves useful for the rapid discovery of new materials

STELLAR CHEMISTRY
Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

Where did the hot Neptunes go

STELLAR CHEMISTRY
Ultima Thule's First Mystery: Lack of a 'Light Curve'

New Horizons Takes the Inside Course to Ultima Thule

Most Distant Solar System Object Ever Observed

A nuclear-powered 'tunnelbot' to search for life on Jupiter's icy moon Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.