. 24/7 Space News .
SATURN DAILY
San Andreas Fault-like tectonics discovered on Saturn moon Titan
by Staff Writers
Honolulu HI (SPX) Oct 18, 2021

illustration only

Strike-slip faulting, the type of motion common to California's well-known San Andreas Fault, was reported recently to possibly occur on Titan, Saturn's largest moon. New research, led by planetary scientists from the University of Hawai?i at Manoa School of Ocean and Earth Science and Technology (SOEST), suggests this tectonic motion may be active on Titan, deforming the icy surface.

On multiple ocean worlds, for example Jupiter's Europa and Saturn's Enceladus, expressions of strike-slip faulting are well documented. Researchers believe the motion along these faults is driven by variations in diurnal tidal stresses-the push and pull caused by the relative motion of a moon and its planet.

Lakes and seas on the surface
Titan has a thick crust made of rock-hard water ice. And Titan is the only place besides Earth known to have liquids in the form of lakes and seas on its surface. However, Titan's liquids are hydrocarbons, such as methane and ethane.

With limited observational data available, Liliane Burkhard, doctoral candidate and graduate student researcher in the Department of Earth Sciences at SOEST, and co-authors examined the possibility for strike-slip tectonics using physics-based faulting models. The model calculations take into account the tidal stress on Titan, the orientations of candidate faults, crustal properties (including pore fluid pressure), and the stress needed to cause the surface material to fail or crack.

"Titan is unique because it is the only known satellite to have stable liquids on the surface," said Burkhard. "We, therefore, were able to make an argument for integrating pore fluid pressures in our calculations, which can reduce the shear strength of the icy crust and may play a key role in the tectonic evolution of Titan."

In this novel study, the scientists found that a combination of diurnal tidal stresses and pore fluid pressures promotes shear failure for shallow faults on Titan. Further, faults near the equator that strike near east-west are optimally oriented for potential failure.

"This is an exciting revelation," said Burkhard. "Our results suggest that under these conditions, shear failure is not only possible, but may be an active deformation mechanism on the surface and in the subsurface of Titan, and could potentially serve as a pathway for subsurface liquids to rise to the surface. This can potentially facilitate material transport that could affect habitability."

Future missions
In the future, Burkhard hopes to conduct more research on the deformation of not only Titan but also other icy moons to uncover their tectonic history and astrobiological implications. Several remote sensing missions are scheduled to launch within the next few years to investigate Ganymede (ESA JUICE, 2022), Europa (NASA Clipper, 2024) and Titan (NASA Dragonfly, 2027).

"Combining new observations with our modeling techniques will strengthen our understanding of the icy crust and pinpoint the best location for exploration with a future lander mission and possibly access to the interior ocean," she added.

"Strike-slip faulting on Titan: Modeling tidal stresses and shear failure conditions due to pore fluid interactions"


Related Links
University of Hawaii
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SATURN DAILY
Titan's lakes can stratify like those on Earth
Tucson AZ (SPX) Sep 30, 2020
Lakes on Saturn's moon Titan, composed of methane, ethane, and nitrogen rather than water, experience density driven stratification, forming layers similar to lakes on Earth. However, whereas lakes on Earth stratify in response to temperature, Titan's lakes stratify solely due to the strange chemical interactions between its surface liquids and atmosphere, says a paper by Planetary Science Institute Research Scientist Jordan Steckloff. Stratification occurs when different parts of a lake have diff ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SATURN DAILY
Russian film crew says shooting in space a 'huge challenge'

Humidity caused corrosion of Starliner capsule valves, Boeing, NASA say

Russia's Soyuz spacecraft lands in Kazakhstan after ISS mission

Boeing aims for unmanned Starliner test flight in first half of 2022

SATURN DAILY
South Korea launches first domestic space rocket but mission fails

Successful static firing test with DLR involvement

China says recent test was spacecraft not missile

Rocket Lab to recover Electron Rocket, introduce helicopter support operations

SATURN DAILY
Hear sounds from Mars captured by Perseverance Rover

Life on Mars: simulating Red Planet base in Israeli desert

NASA plans careful restart for Mars helicopter after quiet period

NASA selects crew for simulated trip to a Mars Moon

SATURN DAILY
Chinese astronaut bridges gender gap

China's longest-yet crewed space mission impressive, expert says

Test conducted to verify spacecraft technology, FM says

China's space station worth ever Yuan

SATURN DAILY
Conclusions from Satellite Constellations 2 Released

From Polar Bears to Polar Orbits

Eutelsat raises its shareholding in OneWeb

Over half OneWeb constellation now deployed

SATURN DAILY
Three hours to save Integral

New model simplifies orbital radar trade-off studies for environmental monitoring

Laser Communications Relay Demonstration gears up for launch

In-Orbit cloud computing and storage platform successfully demonstrated

SATURN DAILY
Scientists find evidence the early solar system harbored a gap between its inner and outer regions

Researchers call for armchair astronomers to help find unknown hidden worlds

NEID Spectrometer Lights Up Path to Exoplanet Exploration

NASA scientist looks to AI, lensing to find masses of free-floating planets

SATURN DAILY
The unusual magnetic fields of Uranus and Neptune

Hubble Finds Evidence of Persistent Water Vapor in One Hemisphere of Europa

SwRI scientists confirm decrease in Pluto's atmospheric density

Hubble shows winds in Jupiter's Great Red Spot are speeding up









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.