24/7 Space News
ENERGY TECH
Salt could play key role in energy transition
Large underground salt formations have the potential to aid in the energy transition in myriad ways. Salt deposits can host caverns for hydrogen storage (left) and can help channel heat for geothermal power (right). The geology near salt formations (center left) is often well-suited for permanent carbon storage, which keeps emissions out of the atmosphere by diverting them underground. Credit: Jackson School of Geosciences.
Salt could play key role in energy transition
by Staff Writers
Austin TX (SPX) Feb 24, 2023

A common ingredient - salt - could have a big role to play in the energy transition to lower carbon energy sources. That's according to a new study led by researchers at The University of Texas at Austin's Bureau of Economic Geology.

The study describes how large underground salt deposits could serve as hydrogen holding tanks, conduct heat to geothermal plants, and influence CO2 storage. It also highlights how industries with existing salt expertise, such as solution mining, salt mining, and oil and gas exploration, could help.

"We see potential in applying knowledge and data gained from many decades of research, hydrocarbon exploration, and mining in salt basins to energy transition technologies," said lead author Oliver Duffy, a research scientist at the bureau. "Ultimately, a deeper understanding of how salt behaves will help us optimize design, reduce risk, and improve the efficiency of a range of energy transition technologies."

Salt has an influential role in shaping Earth's subsurface layers. It is easily squeezed by geologic forces into complex and massive deposits, with some subsurface salt structures taller than Mount Everest. These structures and their surrounding geology offer a number of opportunities for energy development and emissions management, said study co-author Lorena Moscardelli, the director of the bureau's State of Texas Advanced Resource Recovery (STARR) program.

"The co-location of surface infrastructure, renewable energy potential, favorable subsurface conditions and proximity to markets is key to plan for subsurface hydrogen storage," she said. "STARR is currently engaged with emerging energy opportunities in West Texas that involve hydrogen and carbon capture, utilization and storage potential for the region."

Salt domes are proven containers for hydrogen used by oil refineries and the petrochemical industry. According to the paper, these salt formations could also be put to use as holding pens for hydrogen bound for energy production. What's more, the porous rock surrounding them could be used as a permanent storage spot for CO2 emissions. The study describes the potential benefits of co-locating hydrogen production from natural gas called "blue hydrogen" and CO2 storage. While the hydrogen is sent to salt caverns, the CO2 emissions generated by production could be kept from the atmosphere by diverting them to the surrounding rock for permanent storage.

With its numerous salt domes surrounded by porous sedimentary rock, the Texas Gulf Coast is particularly well suited for this type of combined production and storage, according to the researchers.

The study also touches on how salt can aid in the adoption of next-generation geothermal technology. Although the industry is still in its early stages, the researchers show how it can make use of salt's ability to easily conduct heat from warmer underlying rocks to produce geothermal power.

Bureau Director Scott Tinker said that because salt has a role to play in developing new energy resources, it's important that multiple avenues are thoroughly explored. He said that researchers at the bureau are playing a critical role in doing just that.

"Bureau researchers have been studying subsurface salt formations for many decades. For their role in hydrocarbon exploration, as part of the Strategic Petroleum Reserve, for storage of natural gas, and now for their potential to store hydrogen," he said. "That's the remarkable thing about great research. It just keeps evolving, improving and finding new applications."

Additional co-authors include current and former bureau researchers Michael Hudec, Frank Peel, Gillian Apps, Alex Bump, Tim Dooley, Naiara Fernandez, Shuvajit Bhattacharya, Ken Wisian and Mark Shuster.

STARR funded the research. Their work complements research of other bureau research groups focused on the energy transition, such as GeoH2, AGL and HotRock.

Research Report:The role of salt tectonics in the energy transition: An overview and future challenges

Related Links
University of Texas at Austin
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Quantum geometry found to be newest twist in superconductivity
Dallas TX (SPX) Feb 17, 2023
Scientists at The University of Texas at Dallas and their collaborators at The Ohio State University have identified a new mechanism that gives rise to superconductivity in a material in which the speed of electrons is nearly zero, potentially opening a pathway to the design of new superconductors. Their findings, published online Feb. 15 in the journal Nature, demonstrate a new way to measure electron speed and mark the first time that quantum geometry has been identified as the predominant contr ... read more

ENERGY TECH
Crew-6 ready for launch and a program of scientific studies on ISS

Farming on the Moon

SpaceX Dragon crewed flight to ISS pushed back 24 hours

Russia claims Progress leak caused by an "external impact"

ENERGY TECH
World's first 3D-printed rocket Terran 1 is ready for its maiden flight

NASA, SpaceX delay Sunday Crew-6 flight until Monday

SpaceX Endeavour's crew arrive at KSC ahead of launch

Flight Crew Arrives at NASA's Kennedy Space Center for Crew-6 Mission

ENERGY TECH
Drilling the Marker Band Again: Sols 3750-3751

Better tools needed to determine ancient life on Mars

Another Busy Day on Mars: Sol 3749

Perseverance set to begin third year on Mars at Jezero Crater

ENERGY TECH
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

ENERGY TECH
Space Daily retools to AI/ML centric Content Management System

Public work begins on UK's largest commercial satellite control centre

AFRL establishes one-stop shop for partnerships

Sidus Space secures additional launches with SpaceX

ENERGY TECH
Scientists identify new mechanism of corrosion

JEMCA, a new electron microscope center to advance in research into structural biology and new materials

Is biodegradable better? Making sense of 'compostable' plastics

Scientists believe they've found untapped helium reserves

ENERGY TECH
CARMENES project boosts the number of known planets in the solar neighbourhood

"Forbidden" planet orbiting small star challenges gas giant formation theories

Very Large Telescope captures direct images of bright exoplanet

Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?

ENERGY TECH
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.