. 24/7 Space News .
CARBON WORLDS
Safer carbon capture and storage
by Staff Writers
Oxford UK (SPX) Jan 01, 2022

Only the Olla Oil Field contains injected CO2.

Atmospheric carbon dioxide (CO2) levels have increased significantly over the last 50 years, resulting in higher global temperatures and abrupt changes to Earth's climate. Carbon capture and storage (CCS) is one of the new technologies that scientists hope will play an important role in tackling the climate crisis.

It involves the capture of CO2 from emissions from industrial processes, or from the burning of fossil fuels in power generation, which is then stored underground in geological formations. CCS will also be key if we want to produce "clean-burning" hydrogen from hydrocarbon systems.

The UK government recently selected four sites to develop multi-billion-pound CCS projects as part of its scheme to cut 20-30m tonnes of CO2 per year by 2030 from heavy industry. Other countries have made similar carbon reduction commitments.

Depleted hydrocarbon reservoirs have a smaller (10%) storage potential compared to deep saline aquifers but are seen as a critical early opportunity in developing geological CO2 storage technologies.

Fortuitously, CO2 has historically been injected into numerous depleted hydrocarbon reservoirs as a means of enhanced oil recovery (CO2-EOR). This provides a unique chance to evaluate the (bio)geochemical behaviour of injected carbon over engineering timescales.

'CCS will be a key tool in our battle to avert climate change. Understanding how CCS works in practice, in addition tocomputer modelling and lab-based experiments, is essential to provide confidence in safe and secure CO2 geologicalsequestration.' Said Dr. Rebecca Tyne, Dept Earth Science, The University of Oxford

In a paper published, in Nature, Dr. Rebecca Tyne and Prof. Chris Ballentine from Oxford University, lead a team of international collaborators to investigate the behaviour of CO2 within a CO2-EOR flooded oil field in Louisiana, USA.

They compared (bio)geochemical composition of the CO2-EOR flooded field with that of an adjacent field, which was never subjected to CO2-EOR. Data suggest that up to 74% of CO2 left behind by CO2-EOR was dissolved in the groundwater. Unexpectedly, it also revealed, that microbial methanogenesis converted as much as 13-19% of the injected CO2 to methane, which is a stronger greenhouse gas than CO2.

This study is the first to integrate state of the art isotopic tracers (noble gas, clumped and stable isotope data) with microbiological data to investigate the fate of the injected CO2.

'Methane is less soluble, less compressible and less reactive than CO2, so, if produced, the reduces the amount of CO2 we can safely inject into these sites. However, now this process has been identified, we can take it into account in future CCS site selection.' Said Prof. Chris Ballentine, Dept. Earth Sciences, The University of Oxford.

Additionally, the authors suggest that this process is occurring at other CO2-rich natural gas fields and CO2-EOR oil fields. Temperature is a critical consideration, and many CCS geological targets will be too deep and hot for microbesto operate.

However, if CO2 leaks from deeper hot systems into similar shallower colder geological structures, where microbes are present, this process could occur. This research is critical for identifying future CCS targets, establishing safe baseline conditions and long-term monitoring programs, which are essential for low-risk, long-term carbon storage.

Research Report: "Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs"


Related Links
University of Oxford
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Controlled burning of natural environments could help offset our carbon emissions
Cambridge UK (SPX) Dec 30, 2021
Planting trees and suppressing wildfires do not necessarily maximise the carbon storage of natural ecosystems. A new study has found that prescribed burning can actually lock in or increase carbon in the soils of temperate forests, savannahs and grasslands. The finding points to a new method of manipulating the world's natural capacity for carbon capture and storage, which can also help to maintain natural ecosystem processes. The results are published in the journal Nature Geoscience. "Usin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA Research Boosts LED Lamps for Home and Garden

Tech 2022 trends: Meatless meat, Web 3.0, Big Tech battles

Nibbling cats and Covid masks: First look at CES tech show

CES tech fair prepares to draw crowds as Covid surges

CARBON WORLDS
PLD Space closes a Series B investment round of $28 million

Virgin Orbit and Arqit expand launch agreements

Virgin Orbit completes final launch rehearsal ahead of 3rd commercial launch

Webb telescope launch again pushed back

CARBON WORLDS
Perseverance and the Search Amongst the Sand

Holiday Prepping on Mar: Sols 3333-3343

Out of the Shadows of the Maria Gordon notch: Sols 3328-3329

Cliffs and notches keeps Curiosity team busy: Sols 3330-3332

CARBON WORLDS
Shenzhou XIII taikonauts complete second extravehicular mission

New technologies make Chinese astronauts' in-orbit lives easier

On they march as China records 401st flight of Long March rocket family

China's Long March carrier rocket embarks on 400th mission

CARBON WORLDS
UK firm closer to offering global internet via satellites

World's most sophisticated commercial communications satellite launched

Dragon delivery - European science destined for space

Investing recovery and resilience funds in space projects

CARBON WORLDS
ADDMAN deepens space industry and refractory metals expertise via Castheon acquisition

Fabrication of flexible electronics improved using gold and water-vapor plasma

Fingers made of laser light: Controlled grabbing and rotation of biological micro-objects

Step forward in quest to develop living construction materials and beyond

CARBON WORLDS
Astronomers Detect Signature of Magnetic Field on an Exoplanet

Could acid-neutralizing life-forms make habitable pockets in Venus' clouds?

Founding members of world's first independent space science mission confirmed

Life arose on hydrogen energy

CARBON WORLDS
Looking Back, Looking Forward To New Horizons

NASA's Juno Spacecraft 'Hears' Jupiter's Moon

Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry

Cracking the mystery of nitrogen ice dynamics on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.