. 24/7 Space News .
STELLAR CHEMISTRY
SOFIA reveals new view of milky way's center
by Staff Writers
Columbia MD (SPX) Jan 07, 2020

Composite infrared image of the center of our Milky Way galaxy. It spans 600+ light-years across and is helping scientists learn how many massive stars are forming in our galaxy's center. New data from SOFIA taken at 25 and 37 microns, shown in blue and green, is combined with data from the Herschel Space Observatory, shown in red (70 microns), and the Spitzer Space Telescope, shown in white (8 microns). SOFIA's view reveals features that have never been seen before. See full size image here

Universities Space Research Association has announced that SOFIA has revealed a new infrared view of the center of our Milky Way galaxy, showing never-before-seen details, and revealing structures indicative of star birth.

NASA's telescope has captured an extremely crisp infrared image of the center of our Milky Way galaxy. Spanning a distance of more than 600 light-years, this panorama reveals details within the dense swirls of gas and dust in high resolution, opening the door to future research into how massive stars are forming and what's feeding the supermassive black hole at our galaxy's core.

Among the features coming into focus are the jutting curves of the Arches Cluster containing the densest concentration of stars in our galaxy, as well as the Quintuplet Cluster with a stars a million times brighter than our Sun. Our galaxy's black hole takes shape with a glimpse of the fiery-looking ring of gas surrounding it.

The new view was made possible by the world's largest airborne telescope, the Stratospheric Observatory for Infrared Astronomy, or SOFIA. Flying high in the atmosphere, this modified Boeing 747 pointed its infrared camera called FORCAST - the Faint Object Infrared Camera for the SOFIA Telescope - to observe warm, galactic material emitting at wavelengths of light that other telescopes could not detect.

The image combines SOFIA's new perspective of warm regions with previous data exposing very hot and cold material from NASA's Spitzer Space Telescope and the European Space Agency's Herschel Space Observatory.

An overview paper highlighting initial results has been submitted for publication to the Astrophysical Journal. The image was presented for the first time at the American Astronomical Society annual meeting this week in 2020 in Honolulu.

"It's incredible to see our galactic center in detail we've never seen before," said James Radomski, a Universities Space Research Association scientist at the SOFIA Science Center at NASA's Ames Research Center in California's Silicon Valley. "Studying this area has been like trying to assemble a puzzle with missing pieces. The SOFIA data fills in some of the holes, putting us significantly closer to having a complete picture."

Birth of Stars
The Milky Way's central regions have significantly more of the dense gas and dust that are the building blocks for new stars compared to other parts of the galaxy. Yet, there are 10 times fewer massive stars born here than expected. Understanding why this discrepancy exists has been difficult because of all the dust between Earth and the galactic core getting in the way - but observing with infrared light offers a closer look at the situation.

The new infrared data illuminates structures indicative of star birth near the Quintuplet Cluster and warm material near the Arches Cluster that could be the seeds for new stars. Seeing these warm features in high resolution may help scientists explain how some of the most massive stars in our entire galaxy managed to form so close to each other, in a relatively small region, despite the low birthrate in the surrounding areas.

"Understanding how massive star birth happens at the center of our own galaxy gives us information that can help us learn about other, more distant galaxies," said Matthew Hankins, a postdoctoral scholar at the California Institute of Technology in Pasadena, California and principal investigator of the project. "Using multiple telescopes gives us clues we need to understand these processes, and there's still more to be uncovered."

Ring Around the Black Hole
Scientists can also more clearly see the material that may be feeding the ring around our galaxy's central supermassive black hole. The ring is about 10 light-years in diameter and plays a key role in bringing matter closer to the black hole, where it may eventually be devoured. The origin of this ring has long been a puzzle for scientists because it may be depleted over time, but the SOFIA data reveal several structures which could represent material being incorporated into it.

The data were taken in July 2019 during SOFIA's annual deployment to Christchurch, New Zealand, where scientists study the skies over the Southern Hemisphere. The full, calibrated dataset is currently available to astronomers worldwide for further research via the SOFIA Legacy Program.


Related Links
SOFIA Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
'DNA' of Twin Stars Helps Reveal Family History of Milky Way
Austin TX (SPX) Dec 24, 2019
Twin stars appear to share chemical "DNA" that could help scientists map the history of the Milky Way galaxy, according to new research by astronomer Keith Hawkins of The University of Texas at Austin accepted for publication in The Monthly Notices of the Royal Astronomical Society. Hawkins knows something about twin similarities and differences, being himself a fraternal twin. His own study of stellar twins "is a kind of a '23 and Me' for stars," he said with a laugh. Using a telescope at t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Christina Koch sets record for longest space flight by a woman

Amid tech turmoil, celebration at global electronics show

Indonesia Negotiating Launch of 1st Indigenous Astronaut with Russia's Roscosmos

Solar sail in earth orbit is big breakthrough for China

STELLAR CHEMISTRY
NASA prepares Artemis I SLS rocket stage for move to Pegasus Barge

China tests micro propulsion technology for space-based gravitational wave detection

Russia launches Rokot carrier rocket, Its Last Space Launch of 2019

Russia says first hypersonic missiles enter service

STELLAR CHEMISTRY
Mars 2020 rover to seek ancient life, prepare human missions

NASA's trip to Mars begins in California 'clean room'

Developing a technique to study past Martian climate

Promising progress for ExoMars parachutes

STELLAR CHEMISTRY
China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

STELLAR CHEMISTRY
China's heaviest satellite positioned in geosynchronous orbit

SpaceX set to launch third batch of Starlink satellites

US expects to rocket ahead in space during 2020

Russian prosecutors refer 80 criminal cases tied to spaceport construction to authorities

STELLAR CHEMISTRY
Ceramic materials that are IR-transparent

New nano-barrier for composites could strengthen spacecraft payloads

Lasers learn to accurately spot space junk

Northrop Grumman lands $1B contract for F-16 AESA radars

STELLAR CHEMISTRY
A real-life deluminator for spotting exoplanets by reflected starlight

Life may have first emerged in phosphorous-rich lakes

Massive gas disk raises questions about planet formation theory

Researchers spy on planets as fluffy as cotton candy

STELLAR CHEMISTRY
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.