. 24/7 Space News .
TIME AND SPACE
Runaway star might explain black hole's disappearing act
by Staff Writers
Pasadena CA (JPL) Jul 17, 2020

This illustration shows a black hole surrounded by a disk of gas. In the left panel, a streak of debris falls toward the disk. In the right panel, the debris has dispersed some of the gas, causing the corona (the ball of white light above the black hole) to disappear. Credit: NASA/JPL Caltech

At the center of a far-off galaxy, a black hole is slowly consuming a disk of gas that swirls around it like water circling a drain. As a steady trickle of gas is pulled into the gaping maw, ultrahot particles gather close to the black hole, above and below the disk, generating a brilliant X-ray glow that can be seen 300 million light-years away on Earth. These collections of ultrahot gas, called black hole coronas, have been known to exhibit noticeable changes in their luminosity, brightening or dimming by up to 100 times as a black hole feeds.

But two years ago, astronomers watched in awe as X-rays from the black hole corona in a galaxy known as 1ES 1927+654 disappeared completely, fading by a factor of 10,000 in about 40 days. Almost immediately it began to rebound, and about 100 days later had become almost 20 times brighter than before the event.

The X-ray light from a black hole corona is a direct byproduct of the black hole's feeding, so the disappearance of that light from 1ES 1927+654 likely means that its food supply had been cut off. In a new study in the Astrophysical Journal Letters, scientists hypothesize that a runaway star might have come too close to the black hole and been torn apart. If this was the case, fast-moving debris from the star could have crashed through part of the disk, briefly dispersing the gas.

"We just don't normally see variations like this in accreting black holes," said Claudio Ricci, an assistant professor at Diego Portales University in Santiago, Chile, and lead author of the study. "It was so strange that at first we thought maybe there was something wrong with the data. When we saw it was real, it was very exciting. But we also had no idea what we were dealing with; no one we talked to had seen anything like this."

Nearly every galaxy in the universe may host a supermassive black hole at its center, like the one in 1ES 1927+654, with masses millions or billions of times greater than our Sun. They grow by consuming the gas encircling them, otherwise known as an accretion disk. Because black holes don't emit or reflect light, they can't be seen directly, but the light from their coronas and accretion disks offers a way to learn about these dark objects.

The authors' star hypothesis is also supported by the fact that a few months before the X-ray signal disappeared, observatories on Earth saw the disk brighten considerably in visible-light wavelengths (those that can be seen by the human eye). This might have resulted from the initial collision of the stellar debris with the disk.

Digging Deeper
The disappearing event in 1ES 1927+654 is unique not only because of the dramatic change in brightness, but also because of how thoroughly astronomers were able to study it. The visible-light flare prompted Ricci and his colleagues to request follow-up monitoring of the black hole using NASA's Neutron star Interior Composition Explorer (NICER), an X-ray telescope aboard the International Space Station. In total, NICER observed the system 265 times over 15 months. Additional X-ray monitoring was obtained with NASA's Neil Gehrels Swift Observatory - which also observed the system in ultraviolet light - as well as NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the ESA (the European Space Agency) XMM-Newton observatory (which has NASA involvement).

When the X-ray light from the corona disappeared, NICER and Swift observed lower-energy X-rays from the system so that, collectively, these observatories provided a continuous stream of information throughout the event.

Although a wayward star seems the most likely culprit, the authors note that there could be other explanations for the unprecedented event. One remarkable feature of the observations is that the overall drop in brightness wasn't a smooth transition: Day to day, the low-energy X-rays NICER detected showed dramatic variation, sometimes changing in brightness by a factor of 100 in as little as eight hours. In extreme cases, black hole coronas have been known to become 100 times brighter or dimmer, but on much longer timescales. Such rapid changes occurring continuously for months was extraordinary.

"This dataset has a lot of puzzles in it," said Erin Kara, an assistant professor of physics at the Massachusetts Institute of Technology and a coauthor of the new study. "But that's exciting, because it means we're learning something new about the universe. We think the star hypothesis is a good one, but I also think we're going to be analyzing this event for a long time."

It's possible that this kind of extreme variability is more common in black hole accretion disks than astronomers realize. Many operating and upcoming observatories are designed to search for short-term changes in cosmic phenomena, a practice known as "time domain astronomy," which could reveal more events like this one.

"This new study is a great example of how flexibility in observation scheduling allows NASA and ESA missions to study objects that evolve relatively quickly and look for longer-term changes in their average behavior," said Michael Loewenstein, a coauthor of the study and an astrophysicist for the NICER mission at the University of Maryland College Park and NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. "Will this feeding black hole return to the state it was in before the disruption event? Or has the system been fundamentally changed? We're continuing our observations to find out."

Research paper


Related Links
NuSTAR at Caltech
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Planet Nine and the search for primordial black holes orbiting solar system
Boston MA (SPX) Jul 13, 2020
Scientists at Harvard University and the Black Hole Initiative (BHI) have developed a new method to find black holes in the outer solar system, and along with it, determine once-and-for-all the true nature of the hypothesized Planet Nine. The paper, accepted to The Astrophysical Journal Letters, highlights the ability of the future Legacy Survey of Space and Time (LSST) mission to observe accretion flares, the presence of which could prove or rule out Planet Nine as a black hole. Dr. Avi Loeb, Fra ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Astronauts add expertise, refine space station science in orbit

Duckweed is an incredible, radiation-fighting astronaut food

Astronauts conclude third spacewalk on historic SpaceX mission

From the Moon to Mars: China's march across space

TIME AND SPACE
Spaceflight unveils next-gen orbital transfer vehicle to fly aboard SpaceX mission

Southern Launch prepares for lift off In South Australia

Soyuz Launches From Kourou to Resume in October, German Aerospace Centre Says

New electric propulsion chamber explores the future of space travel

TIME AND SPACE
UAE again delays Mars probe launch over weather

The quest to find signs of ancient life on Mars

NASA's InSight Flexes Its Arm While Its 'Mole' Hits Pause

Emirates Mars Mission to launch with ASU instrument

TIME AND SPACE
Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

TIME AND SPACE
Satellite for US Air Force launched as part of L3Harris' Responsive Constellation Contract

SpaceX delays launch of mini-satellites

Airbus expands its SpaceDataHighway with second satellite

Columbus gets a new European science rack

TIME AND SPACE
NASA's Deep Space Station in Australia Is Getting an Upgrade

Shock-dissipating fractal cubes could forge high-tech armor

Programmable balloons pave the way for new shape-morphing devices

Portable system boosts laser precision, at room temperature

TIME AND SPACE
Artificial intelligence predicts which planetary systems will survive

'Disk Detective' Needs Your Help Finding Disks Where Planets Form

NASA Awards SETI Institute Contract for Planetary Protection Support

Supercomputer reveals atmospheric impact of gigantic planetary collisions

TIME AND SPACE
Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.