. 24/7 Space News .
STELLAR CHEMISTRY
Roman Space Telescope will help drive new era of cosmological discovery
by Ashley Balzer for GSFC News
Greenbelt MD (SPX) Nov 10, 2021

The current observing strategy for Roman's High Latitude Wide Area Survey will enable observations of about 5% of the sky - 2,000 square degrees - over the course of about a year. However, the team illustrated how changing the survey's design could yield compelling results. The survey could be extended, for example, to cover more of the same area that Rubin will observe. Or it could observe galaxies using a single broad filter, instead of imaging with four separate ones, allowing faster observations while still retaining the survey's depth.

A team of scientists has forecast the scientific impact of the Nancy Grace Roman Space Telescope's High Latitude Wide Area Survey on critical questions in cosmology. This observation program will consist of both imaging, which reveals the locations, shapes, sizes, and colors of objects like distant galaxies, and spectroscopy, which involves measuring the intensity of light from those objects at different wavelengths, across the same enormous swath of the universe. Scientists will be able to harness the power of a variety of cross-checking techniques using this rich data set, which promises an unprecedented look into some of cosmology's most vexing problems.

When it begins work in 2027, Roman will yield results that would be impossible to achieve using existing telescopes. Its impact will be further enhanced by teaming up with other new facilities like the Vera C. Rubin Observatory, a novel wide-field telescope now being built on the summit of Cerro Pachon in Chile. Scheduled to begin full operations by 2024, Rubin's planned 10-year survey extends across Roman's five-year primary mission.

"By predicting Roman's science return, we hope to help the scientific community develop the best strategy for observing the cosmos," said Tim Eifler, an assistant professor at the University of Arizona in Tucson. "We eagerly await the images and data the mission will send back to help us better understand some of the biggest mysteries in the universe."

The team's results are described in two papers led by Eifler and published in the October edition of the Monthly Notices of the Royal Astronomical Society. The study is part of an effort by a broader team of world-leading scientists to prepare to analyze Roman's cosmological data.

"Our study was only possible because of all the expertise, from theorists to observers, that is present in the larger team," Eifler said.

A multitalented observatory
The Roman mission owes its multifaceted approach to its combination of imaging and spectroscopy across an enormous field of view, which enables two main cosmological techniques: galaxy clustering and weak gravitational lensing. The first measures the exact positions of hundreds of millions of faint galaxies. Weak lensing measures how the images of galaxies have been distorted by the gravity of intervening matter. With its wide, deep view, Roman will allow scientists to study the structure and evolution of the universe and to explore the concept of cosmic acceleration as never before.

Learning about how the universe evolved to its present state will offer clues about what's speeding up the universe's expansion. In addition to weak lensing and galaxy clustering, Roman will study this mystery in several ways, including surveying the sky for a special type of exploding star called a type Ia supernova. The mission will also probe cosmic acceleration by measuring the masses and redshifts of galaxy clusters, the largest structures in the universe. The number and size of these structures depend on how the speed of the universe's expansion changes.

"Using several different methods to study the cause behind cosmic acceleration will help astronomers greatly reduce the uncertainty that has plagued expansion measurements," said Hironao Miyatake, an associate professor at Nagoya University in Japan and a co-author of the papers. "Each method will cross-check the others, which is one reason Roman will be able to provide extremely precise results."

Combining so many observational methods will allow astronomers to investigate additional mysteries, too, including determining the amount of dark matter - invisible matter that is detectable only through its gravitational effects - and tracking the growth of black holes in the early universe that form the seeds of massive galaxies.

"Roman is designed specifically to solve mysteries such as cosmic acceleration, but its enormous view of the universe will reveal a treasure trove of data that could help explain other puzzles as well," said Elisabeth Krause, an assistant professor at the University of Arizona and a co-author of the papers. "The mission could even help answer questions no one has thought to ask yet."

Teaming up with Rubin
Roman isn't the only observatory designed to probe cosmic acceleration. In one paper, the team explored how Roman will work hand-in-hand with another telescope: the Rubin Observatory. Named for American astronomer Vera Rubin, who showed that galaxies are mostly made of dark matter, the Rubin Observatory will use its 8.4-meter (27.4-foot) primary mirror to conduct a truly gigantic survey of the sky, covering about 44% of the sky over 10 years.

"Roman's observations will begin, in terms of wavelength, where Rubin's observations end," Eifler said. "Roman plans to view a smaller area of the sky, but it will see much deeper and generate clearer pictures since it will be located above Earth's atmosphere."

The current observing strategy for Roman's High Latitude Wide Area Survey will enable observations of about 5% of the sky - 2,000 square degrees - over the course of about a year. However, the team illustrated how changing the survey's design could yield compelling results. The survey could be extended, for example, to cover more of the same area that Rubin will observe. Or it could observe galaxies using a single broad filter, instead of imaging with four separate ones, allowing faster observations while still retaining the survey's depth.

"It is exciting to consider the benefits we would gain from merging the two telescopes' observations," Krause said. "Roman will gain from Rubin's larger observing field, and Rubin will gain enormously from having some deeper observations with Roman's better image quality. The missions will greatly enhance each other."


Related Links
Nancy Grace Roman Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Next Generation Very Large Array strongly endorsed by Decadal Survey
Charlottesville VA (SPX) Nov 05, 2021
The Astronomy and Astrophysics Decadal Survey (Astro2020) of the U.S. National Academy of Sciences has published its report and the Next Generation Very Large Array (ngVLA) received high priority for new ground-based observatories to be constructed during the coming decade. The report, in which ngVLA shared second ranking among ground-based projects, was the culmination of a lengthy process aimed at developing a comprehensive research strategy and vision for a decade of transformative science at the fro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Matthias Maurer arrives at the International Space Station

SpaceX capsule with crew of four docks with ISS

Orbital Assembly Corporation promote space hotels in LEO for investment

Off-world colony simulation reveals changes in human communication over time with Earth

STELLAR CHEMISTRY
SpaceX deploys 53 Starlink internet satellites from Falcon 9 rocket

Webb's Ariane 5 core stage made ready

SpaceX launches four astronauts to ISS

SpinLaunch conducts first successful test of giant 'suborbital accelerator' satellite sling

STELLAR CHEMISTRY
Mars - or Arrakis

Docking the Perseverance robotic arm

Astronaut training in the land of volcanoes

Curiosity powers on with extra energy for Martian science

STELLAR CHEMISTRY
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

STELLAR CHEMISTRY
European software-defined satellite starts service

Groundbreaking Iridium Certus 100 Service Launches with Partner Products for Land, Sea, Air and Industrial IoT

iRocket And Turion Space ink agreement for 10 launches to low earth orbit

OneWeb and Leonardo DRS announce partnership to offer low earth orbit services for Pentagon

STELLAR CHEMISTRY
LeoLabs Australia announces Aussie Space Radar Project

UK Space Agency funds further research into new laser-based satellite communications system

Russia successfully tests 'space radiation shield'

ISS changes orbit to avoid collision with Chinese debris

STELLAR CHEMISTRY
Circumbinary planet discovered by TESS validates new detection technique

Discovering exoplanets using artificial intelligence

Hunting for alien planets

New model will help find Earth-like Exoplanets

STELLAR CHEMISTRY
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.