. | . |
Rocket sees curling waves above Alaskan sky by Miles Hatfield for GSFC News Greenbelt MD (SPX) Aug 07, 2020
The "surfer waves" in this image, forming high above the Alaskan sky, illuminate the invisible currents in the upper atmosphere. They were measured by trimethyl-aluminum gas released during a sounding rocket launch from Poker Flat, Alaska, on Jan. 26, 2018. Scientists photograph the gas, which is not harmful to humans, after it instantaneously ignites when exposed to oxygen. The findings were published in JGR: Space Physics. Such curling waves are a product of the Kelvin-Helmholtz instability, which occurs when streams of gas or liquid pass by each other at different speeds. As the streams grate against one another, they produce characteristic curls that appear all over in nature, from the ocean's surface to the swirling dust along Jupiter's belt. Researchers from Clemson University in South Carolina observed the Kelvin-Helmholtz instability shown here some 65 miles above Earth. As the waves dissipated, they created turbulence, mixing the gases above and below them. This turbulent sloshing within an otherwise stable layer of the atmosphere shows one way gases move up and down in our atmosphere. It could explain why molecular nitrogen, which is heavy, is sometimes observed much higher than it should be, while lighter atomic oxygen somehow sinks below. Understanding how winds move through the atmosphere contributes an extra puzzle piece to the entire atmospheric system - where a slight temperature imbalance at the equator can ultimately lead to huge gusts of wind high above the arctic.
New Space satellite pinpoints industrial methane emissions Paris (ESA) Jul 30, 2020 Methane may not be as abundant in the atmosphere as carbon dioxide, but with a global warming potential many times greater than carbon dioxide, monitoring and controlling industrial emissions of this potent gas is imperative to helping combat climate change. GHGSat is a New Space initiative that draws on Copernicus Sentinel-5P data for mapping methane hotspots - and its Claire satellite has now collected more than 60 000 methane measurements of industrial facilities around the world. Coperni ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |