Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Rice lab clocks 'hot' electrons
by Staff Writers
Houston TX (SPX) Feb 03, 2014


Rice University researchers have successfully measured the time it takes electrons generated by plasmons to move from a gold nanorod to graphene. From left, Rice chemist Stephan Link and graduate students Lin-Yung Wang and Anneli Hoggard. Image courtesy Jeff Fitlow/Rice University.

Plasmonic nanoparticles developed at Rice University are becoming known for their ability to turn light into heat, but how to use them to generate electricity is not nearly as well understood. Scientists at Rice are working on that, too.

They suggest that the extraction of electrons generated by surface plasmons in metal nanoparticles may be optimized. Rice researchers led by chemist Stephan Link and graduate student Anneli Hoggard are endeavoring to understand the physics; they started by measuring the speed and efficiency of excited "hot" electrons drawn from gold nanoparticles into a sheet of graphene.

It's a good thing for scientists and engineers to know as they work on technologies beyond standard photovoltaic devices that gobble light to drive chemical reactions or next-generation electronics. The work was reported recently in the American Chemical Society journal ACS Nano. "We've looked at this process on a single-particle level," said lead author Hoggard.

"Instead of looking at a device that has many junctions, we've looked at one particle at a time. We had to measure a lot of particles to get good statistics." Dark-field scattering and photoluminescence spectroscopy of more than 200 nanoparticles helped them determine that it takes about 160 femtoseconds (quadrillionths of a second) for an electron to transfer from the particle to highly conducting graphene, the single-atom-thick form of carbon.

Plasmons are the collective excitation of free electrons in metals that, when stimulated by an energy source like sunlight or a laser, set up a harmonic oscillation of the surface charges similar to waves. In the process, they scatter light that can be read by a spectrometer, which captures and categorizes light according to its wavelengths. If the energy input is intense enough, the output can be intense as well.

In one practical example demonstrated at Rice, plasmon excitation in gold nanoparticles produces heat that instantly turns even ice-cold water into steam. That excitation energy can also be channeled in other directions through the creation of hot electrons that can transfer to suitable acceptors, Link said, but how fast usable electrons flow from plasmonic nanoparticles is little understood.

"The plasmon generates hot electrons that decay very quickly, so intercepting them is a challenge," he said. "We're now realizing these electrons can be useful."

That thought prompted Link's lab to embark upon the painstaking effort to analyze single nanoparticles. The researchers placed gold nanorods on beds of both inert quartz and highly conductive graphene and used a spectrometer to view the line width of the plasmon-scattering spectrum. The homogeneous line width obtained via single-particle spectroscopy is a measure of the range of wavelengths that resonantly excite a surface plasmon.

It's also a measure of the plasmon lifetime. Broad line widths correspond to short lifetimes and narrow line widths to long lifetimes. The Rice researchers found graphene broadened the nanorods' surface plasmon response - and shortened its lifetime - by accepting hot electrons. By acting as an electron acceptor, the graphene accelerated damping of the plasmons.

The difference in damping between the quartz and graphene samples provided a means to calculate the electrons' transfer time. "The plasmon resonance is determined by the size and the shape of the nanoparticle," Hoggard said. "And it usually appears as a single peak for gold nanorods.

But there are important parameters about the peak: The position and the width of the peak can give us information about the particle itself, or the type of environment it's in. So we looked at how the width of the peak changes when nanoparticles are introduced into an electron-accepting environment, which in this case is graphene."

The Rice lab hopes to optimize the connection between the nanoparticles and graphene or another substrate, preferentially a semiconductor that will allow them to trap hot electrons. "But this experiment wasn't about making a specific device," Link said.

"It was about measuring the transfer step. Of course, now we're thinking about designing systems to separate the charge longer, as the electrons transferred quickly back to the gold nanorods.

"We want to put these hot electrons to work for devices like photodetectors or as catalysts where these electrons can do chemistry. "It would be fascinating if we could use this process as a source of hot electrons for catalysis and also as an analytical tool for observing such plasmon-enabled reactions. That's the big picture."

The paper's co-authors are Rice graduate students Lin-Yung Wang, Lulu Ma and Jana Olson; former postdoctoral researchers Ying Fang and Zheng Liu; senior Ge You; research scientist Wei-Shun Chang and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry and chair of Rice's Department of Materials Science and NanoEngineering. Link is an associate professor of chemistry and of electrical and computer engineering. The Robert A. Welch Foundation, the National Science Foundation, the Army Research Office and the American Chemical Society Petroleum Research Fund supported the research.

Read the abstract here

.


Related Links
Rice University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Hugging hemes help electrons hop
Richland WA (SPX) Jan 23, 2014
Researchers simulating how certain bacteria run electrical current through tiny molecular wires have discovered a secret Nature uses for electron travel. The results are key to understanding how the bacteria do chemistry in the ground, and will help researchers use them in microbial fuel cells, batteries, or for turning waste into electricity. Within the bacteria's protein-based wire, mole ... read more


TIME AND SPACE
NASA's LRO Snaps a Picture of NASA's LADEE Spacecraft

Sole camera from NASA moon missions to be auctioned

New results on the geologic characteristics of the Chang'e-3 exploration region

China's moon rover experiences abnormality

TIME AND SPACE
Work on Mystery Rock Continues As Rover Marks 10

NASA Mars Rover's View of Possible Westward Route

ExoMars orbiter core module completed

The Curiosity Mars rover vehicle has damaged a wheel

TIME AND SPACE
Future interplanetary spacecraft to be equipped with 'plantations'

New scientific field looks at the big picture

Russian Space Farmers Harvest Wheat, Peas and Greens

FAA Grants Waypoint 2 Space Safety Approval Of Training Programs

TIME AND SPACE
Waiting for Yutu

Moon plays trick on Jade Rabbit

'Goodnight, humans': Says Yutu As The Sun Sets

Extra Time for Tiangong

TIME AND SPACE
NASA Extends Reliance on Russian Spacecraft Until 2018

NASA Selects Physical Science Research Proposals for the ISS

Russian Cargo Craft Departure Clears Way for Next Delivery

British firm says its space station cameras to provide Web images

TIME AND SPACE
Both payloads for Arianespace's next Ariane 5 flight are mated to the launcher

45th Space Wing Supports NASA Launch

Athena-Fidus receives its "kick" for Arianespace's upcoming Ariane 5 launch

ILS Proton To Launch Yamal 601

TIME AND SPACE
First Weather Map of Brown Dwarf

NASA-Sponsored 'Disk Detective' Lets Public Search for New Planetary Nurseries

Astronomers create first map of weather on nearby brown dwarf star

ALMA Discovers a Formation Site of a Giant Planetary System

TIME AND SPACE
New NASA Laser Technology Reveals How Ice Measures Up

Chameleon of the sea reveals its secrets

Quicker method paves the way for atomic-level design

Microwires as mobile phone sensors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement