. 24/7 Space News .
CHIP TECH
Researching the chips of the future
by Staff Writers
Valencia, Spain (SPX) Oct 20, 2020

Technology stack for programmable photonic circuits.

The chips of the future will include photonics and electronics; they will have a bandwidth, speed and processing and computing abilities that are currently unthinkable; they will make it possible to integrate many other components and their capabilities will increase exponentially compared to electronic chips. In all, they will be essential in many fields; they will bring us a little closer, for example, to quantic computing or to the autonomous car.

The key resides in programmable photonics, a technology in which the Polytechnic University of Valencia (UPV), through the Photonics Research Labs of the iTEAM institute and its spin-off iPronics, programmable photonics SL, is today an international benchmark. This much is confirmed by Nature, which in its latest iteration has published an article that analyses the present and future of this discipline - programmable photonics - signed, among others, by Photonics Research Labs researchers Daniel Perez and Jose Capmany.

"Programmable photonics marks a before and an after in the field of telecommunications. It is a field with great potential and value, due to the complementarity it has with electronics. Our article includes all the progress that has been achieved heretofore around the world in this field, which is garnering increased levels of interest," highlights Jose Capmany.

Democratising photonics
As part of this progress, special mention must go to the generic purpose programmable chips that the UPV research team is working on. These circuits are capable of providing numerous functionalities by using a single structure, in an analogous way to how microprocessors work in electronics.

The article also includes the most recent landmarks in the development of chips for specific purposes - designed for a specific task - and mentions the research of European centres such as the University of Ghent and the Polytechnic University of Milan, or American centres such as the MIT, the University of Stanford and the University of Toronto.

"From a fundamental point of view, the article describes and presents the technology of integrated photonics and the different levels required - photonic hardware, control electronics and software - to make the most of the potential of this type of systems," adds Daniel Perez.

For the UPV researchers, these technologies will make it possible to "democratise" photonics, which would entail a "true revolution" in the field of telecommunications.

"As well as for the autonomous car or quantic computing, integrated photonics will also help improve automated learning systems, 5G communications or the development of neuromorphic computing, with chips that will imitate the network of neurons of our brain and their connections. All these uses require great flexibility and the processing of large amounts of data at high speeds. And this is what programmable photonics offers, and it is what the article published in Nature addresses," highlights Daniel Perez.

Research paper


Related Links
Polytechnic University of Valencia
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Bringing a power tool from math into quantum computing
Tokyo, Japan (SPX) Oct 15, 2020
The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering. Although there already exists an algorithm that computes the Fourier transform in quantum computers, it is not versatile enough for many practical applications. In a recent study, scientists from Tokyo University of Science tackle this problem by designing a novel quantum circuit that calculates the Fourier transform in a much quicker, versatile, and more efficient way. The Fourier ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Landing Coverage Set for NASA Astronaut Chris Cassidy, Space Station Crew

NASA's Kate Rubins, 2 cosmonauts dock with ISS

NASA Announces Partners to Advance 'Tipping Point' Technologies for the Moon, Mars

SwRI planetary scientist to fly commercial on SpaceShipTwo

CHIP TECH
Swedish Space Corporation to launch satellites from Esrange Space Center

Lockheed Martin to Acquire i3 Hypersonics Portfolio

Arianespace offers new shared smallsat payload opportunities on its Vega launcher

Asteroid sampling technology tested on Blue Origin's suborbital rocket

CHIP TECH
Airbus to bring first Mars samples to Earth

NASA, JAXA to Send Sampling Technology to Moon and Phobos

China's Mars probe completes deep-space maneuver

NASA's Perseverance Rover Will Peer Beneath Mars' Surface

CHIP TECH
Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

CHIP TECH
Spaceflight Inc. updates on next Electron and PSLV missions to expand smallsat constellations

Iridium says consumers staying connected when off-the-Grid during COVID-19 pandemic

Space agency leaders call for greater international cooperation

Corrective measures needed from satellite "mega-constellation" operators

CHIP TECH
When honey flows faster than water

What laser color do you like

Natural fibres threaded into satellites for safer missions

Laser technology used to measure biomass of giant Californian redwood trees

CHIP TECH
No social distancing at the beginning of life

Vaporized metal in the air of an exoplanet

Massive stars are factories for ingredients to life

New research explores how super flares affect planets' habitability

CHIP TECH
Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.