![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Valencia, Spain (SPX) Oct 20, 2020
The chips of the future will include photonics and electronics; they will have a bandwidth, speed and processing and computing abilities that are currently unthinkable; they will make it possible to integrate many other components and their capabilities will increase exponentially compared to electronic chips. In all, they will be essential in many fields; they will bring us a little closer, for example, to quantic computing or to the autonomous car. The key resides in programmable photonics, a technology in which the Polytechnic University of Valencia (UPV), through the Photonics Research Labs of the iTEAM institute and its spin-off iPronics, programmable photonics SL, is today an international benchmark. This much is confirmed by Nature, which in its latest iteration has published an article that analyses the present and future of this discipline - programmable photonics - signed, among others, by Photonics Research Labs researchers Daniel Perez and Jose Capmany. "Programmable photonics marks a before and an after in the field of telecommunications. It is a field with great potential and value, due to the complementarity it has with electronics. Our article includes all the progress that has been achieved heretofore around the world in this field, which is garnering increased levels of interest," highlights Jose Capmany.
Democratising photonics The article also includes the most recent landmarks in the development of chips for specific purposes - designed for a specific task - and mentions the research of European centres such as the University of Ghent and the Polytechnic University of Milan, or American centres such as the MIT, the University of Stanford and the University of Toronto. "From a fundamental point of view, the article describes and presents the technology of integrated photonics and the different levels required - photonic hardware, control electronics and software - to make the most of the potential of this type of systems," adds Daniel Perez. For the UPV researchers, these technologies will make it possible to "democratise" photonics, which would entail a "true revolution" in the field of telecommunications. "As well as for the autonomous car or quantic computing, integrated photonics will also help improve automated learning systems, 5G communications or the development of neuromorphic computing, with chips that will imitate the network of neurons of our brain and their connections. All these uses require great flexibility and the processing of large amounts of data at high speeds. And this is what programmable photonics offers, and it is what the article published in Nature addresses," highlights Daniel Perez.
![]() ![]() Bringing a power tool from math into quantum computing Tokyo, Japan (SPX) Oct 15, 2020 The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering. Although there already exists an algorithm that computes the Fourier transform in quantum computers, it is not versatile enough for many practical applications. In a recent study, scientists from Tokyo University of Science tackle this problem by designing a novel quantum circuit that calculates the Fourier transform in a much quicker, versatile, and more efficient way. The Fourier ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |