. | . |
Researchers validate theory that neutrinos shape the universe by Staff Writers Tokyo, Japan (SPX) Dec 03, 2020
The effect that nearly massless, subatomic particles called neutrinos have on the formation of galaxies has long been a cosmological mystery - one that physicists have sought to measure since discovering the particles in 1956. But an international research team including the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Principal Investigator Naoki Yoshida, who is also a professor in the department of physics at the University of Tokyo, has created cosmological simulations that accurately depict the role of neutrinos in the evolution of the universe. Their study was recently published in The Astrophysical Journal. Missouri University of Science and Technology (Missouri S and T) cosmologist Dr. Shun Saito, an assistant professor of physics and a researcher on the team, says the work is a milestone in the process of simulating the formation of the structure of the universe. Saito is also a visiting associate scientist at the Kavli IPMU. The team used a system of differential equations known as the Vlasov-Poisson equations to explain how neutrinos move through the universe with different values assigned to their mass. The technique accurately represented the velocity distribution function of the neutrinos and followed its evolution over time. The researchers then examined the effects of neutrinos on galaxy formation and evolution. Their results showed that neutrinos suppress the clustering of dark matter - the undefined mass in the universe - and, in turn, galaxies. They found that neutrino-rich regions are strongly correlated with massive galaxy clusters, and that the effective temperature of the neutrinos varies substantially depending on the mass of the neutrino. The researchers say that the most stringent experiments used to estimate neutrino mass are cosmological observations, but those can only be relied upon if simulation predictions are accurate. "Overall, our findings are consistent with both theoretical predictions and the results of previous simulations," says Dr. Kohji Yoshikawa from the Center for Computational Sciences at the University of Tsukuba and lead author of the study. "It is reassuring that the results from entirely different simulation approaches agree with each other." "Our simulations are important because they set constraints on the unknown quantity of the neutrino mass," says Saito from Missouri S and T. "Neutrinos are the lightest particles we know of. We only recently learned neutrinos have mass from the discovery featured in the 2015 Nobel Prize in physics." That prize awarded two scientists, including Kavli IPMU Principal Investigator Takaaki Kajita, who is also the Director at the Institute for Cosmic Ray Research, University of Tokyo, for their separate discoveries that one kind of neutrino can change into another, which showed that neutrinos have mass. "Our work might ultimately lead to a robust determination of the neutrino mass," Saito says.
Research Report: "Cosmological Vlasov-Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass"
A hint of new physics in polarized radiation from the early Universe Tokyo, Japan (SPX) Nov 26, 2020 Using Planck data from the cosmic microwave background radiation, an international team of researchers has observed a hint of new physics. The team developed a new method to measure the polarization angle of the ancient light by calibrating it with dust emission from our own Milky Way. While the signal is not detected with enough precision to draw definite conclusions, it may suggest that dark matter or dark energy causes a violation of the so-called "parity symmetry." The laws of physics governin ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |