. | . |
Researchers use origami to solve space travel challenge by Staff Writers Pullman WA (SPX) Dec 16, 2020
WSU researchers have used the ancient Japanese art of paper folding to possibly solve a key challenge for outer space travel - how to store and move fuel to rocket engines. The researchers have developed an origami-inspired, folded plastic fuel bladder that doesn't crack at super cold temperatures and could someday be used to store and pump fuel. Led by graduate student Kjell Westra and Jake Leachman, associate professor in the School of Mechanical and Materials Engineering, the researchers have published their work in the journal, Cryogenics. The challenge of fuels management has been an important limiting factor in space travel, largely restricting space travel to either shorter trips for large amounts of cargo or to small satellites for long duration missions. In the early days of the U.S. space program in the 1960s and 1970s, researchers tried to develop round balloons to store and pump liquid hydrogen fuel. They failed. Every bladder would shatter or leak as they tried to squeeze it at the required very cold temperatures for the liquid fuels. The heartiest designs only lasted five cycles. The researchers abandoned the effort and instead came to rely on less ideal propellant management devices. Current systems use metal plates and the principle of surface tension to manage liquid fuels, but the systems are slow and can only dribble out fuels in small quantities, so the size of fuel tanks and missions are limited. "Folks have been trying to make bags for rocket fuel for a long time," Leachman said. "We currently don't do large, long-duration trips because we can't store fuel long enough in space." Through a literature search, Westra came upon a paper in which researchers developed some origami-based bellows. Researchers started studying origami in the 1980s and 1990s with the idea of making use of its complex shapes and interesting mechanical behavior. The origami folds spread out stresses on the material, making it less likely to tear. Using a thin, Mylar plastic sheet, Westra and collaborators in the Hydrogen Properties for Energy Research laboratory decided to apply the design he saw to develop a fuel bladder. "The best solutions are the ones that are already ready-made and that you can then transfer to what you're working on," Westra said. Having never tried origami before, he said it took a couple tries and a few hours with a Youtube video to figure out how to fold the bellows. Once he folded it, he tested it in liquid nitrogen at about 77 degrees Kelvin. The researchers found that the bladder can be squeezed at least 100 times without breaking or leaking under cold conditions. They've since demonstrated the bellows numerous times, and it still doesn't have holes in it. "We think we've solved a key problem that was holding everybody back," Leachman said. "We're kind of excited about that." The researchers are now beginning to conduct more rigorous testing. They plan to do testing with liquid hydrogen, assessing how well they can store and expel fuel and comparing the flow rates of their bladder with current systems. Westra recently received a NASA graduate fellowship to continue the project. "Kjell's success is a perfect example of great WSU students studying what's out there and then being in the right place at the right time to make it happen," Leachman said.
NIST designs a prototype fuel gauge for orbit Washington DC (SPX) Nov 13, 2020 Liquids aren't as well behaved in space as they are on Earth. Inside a spacecraft, microgravity allows liquids to freely slosh and float about. This behavior has made fuel quantity in satellites difficult to pin down, but a new prototype fuel gauge engineered at the National Institute of Standards and Technology (NIST) could offer an ideal solution. The gauge, described in the Journal of Spacecraft and Rockets, can digitally recreate a fluid's 3D shape based on its electrical properties. The desig ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |