. 24/7 Space News .
WATER WORLD
Researchers shed (laser) light on emerging water treatment technique
by Staff Writers
Kingston RI (SPX) Dec 13, 2022

Dugan Hayes and Cali Antolini using a technique involving laser pulses fired at intervals on the order of quadrillionths of a second, can investigate chemical reactions driven by light.

Assuring that a growing global population has access to clean water will require new water treatment methods. One of these next-generation methods involves a form of iron called ferrate, which creates fewer toxic byproducts than chemicals like chlorine and is potentially cheaper and easier to deploy than complex ozone treatment systems.

For ferrate to work best, however, it needs to be combined with other compounds or excited by light energy. Now, using a technique involving ultra-fast laser and X-ray pulses, a team of University of Rhode Island researchers has revealed new details about the chemical reaction that occurs when ferrate is exposed to visible and ultraviolet light. The findings, published in the Journal of the American Chemical Society, could help researchers to optimize its use in water treatment applications.

"The light activation of ferrate has really never been investigated in detail," said Dugan Hayes, an assistant professor of chemistry at URI and the study's corresponding author. "In this study, we were able to reveal some of those photophysical properties for the first time."

Ferrate is an oxidant, meaning it can break down contaminants by stealing their electrons. On its own, ferrate is a fairly strong oxidant. But when excited by light, it produces an even more powerful oxidant known as Fe(V) (or iron-5+). Before this new study, however, it wasn't known just how much energy was required to produce Fe(V), and in what quantities it could be produced.

To find those things out, Cali Antolini, a Ph.D. student in Hayes' lab, led experiments using transient absorption spectroscopy, a technique that investigates photochemical reactions using ultra-fast laser pulses. An initial pulse initiates a reaction, while subsequent pulses probe the reaction steps as they play out. The speed of the pulses-on the order of a few quadrillionths of a second-gives researchers a detailed record of even the shortest-lived reaction products.

Antolini carried out experiments using ultraviolet and visible light pulses using facilities at URI. She performed similar experiments using X-rays at Argonne National Laboratory's Advanced Photon Source in Chicago, where Antolini works as part of a Department of Energy student research program.

The work showed that the conversion rate from ferrate to the highly reactive Fe(V) was about 15%. That's roughly similar to the radical production of ozone purification systems. The research also produced surprising results related to the type of light needed to produce the more reactive iron species.

The team found that a range of light wavelengths, stretching from ultraviolet spectra nearly into the visible, should be able to produce Fe(V). That's an important finding for two reasons, the researchers say. Visible light takes less energy to produce that ultraviolet light, which could make ferrate excitation more energy efficient than had been previously assumed. Plus, visible light scatters less in cloudy water, meaning Fe(V) can be produced in a wide variety of water conditions.

The results are encouraging to Joseph Goodwill, an assistant professor of civil and environmental engineering at URI and a study coauthor. Part of his research program is finding ways to bridge the "clean water gap" between larger urban water treatment systems and small rural systems.

Ferrate-based purification systems are a promising option for smaller systems, where expensive and elaborate ozone systems aren't practical, Goodwill says. Ferrate also has the potential to decrease reliance on harsh chemicals like chlorine, and may even eliminate stubborn contaminants that chlorine can't remove. Those include per-/polyfluoroalkyl substances (PFAS), a class of chemicals increasingly found in wells and water systems across the U.S. But before ferrate systems can be widely deployed, scientists need a better understanding of ferrate chemistry.

"The formation of powerful oxidants from ferrate has been difficult to understand mechanistically, and this has blocked process optimization and full-scale implementation in water treatment applications," Goodwill said. "The results presented in this paper improve our fundamental understanding of the ferrate system, which opens doors for applications."

The researchers are hopeful that these new findings on how ferrate photochemistry works will help in expanding the use of iron-based water treatment.

Research Report:Photochemical and Photophysical Dynamics of the Aqueous Ferrate(VI) Ion


Related Links
University of Rhode Island
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Franco-US satellite set for unprecedented survey of Earth's water
Paris (AFP) Dec 12, 2022
A Franco-US satellite is due for launch this week on a mission to survey with unprecedented accuracy nearly all water on Earth's surface for the first time and help scientists investigate its impact on Earth's climate. For NASA and France's space agency CNES, which have worked together in the field for 30 years, it's a landmark scientific mission with a billion dollar budget. French President Emmanuel Macron went to NASA's Washington headquarters at the end of November alongside US Vice Presiden ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Turning science fiction into science fact

Practice makes perfect for student inventions at JPL competition

NASA taps Collins Aerospace to develop new spacesuits for Space Station

These freeze-drying algae can awaken from cryostasis, could help spaceflights go farther

WATER WORLD
US conducts successful hypersonic missile test: Air Force

China launches Long March 2D carrier rocket

PSLV-XL rocket motor made by industry passes test: ISRO

Arctic Sweden in race for Europe's satellite launches

WATER WORLD
Evaluating a Possible Drill Location

Sol 3676 Another: 'Bore-ing' Day on Mars

Martian dust devil analogues in the Mojave Desert #ASA183

Tiny underwater sand dunes may shed light on larger terrestrial and Martian formations

WATER WORLD
China's space station Tiangong enters new phase of application, development

China's Shenzhou-14 astronauts return safely, accomplishing many "firsts"

China's deep space exploration laboratory eyes top talents worldwide

China astronauts return from Tiangong space station

WATER WORLD
SpaceX launches 40 Internet satellites for rival OneWeb into orbit

US grants OQ more patents for world's first 5G IoT satellite LEO constellation

Spirent brings realistic testing to emerging LEO satellite applications

Slingshot Aerospace raises $40M in oversubscribed Series A2 funding round

WATER WORLD
Say hello to the toughest material on Earth

Cubic silicon carbide wafers demonstrate high thermal conductivity, second only to diamond

Scientist mimic nature to make nano particle metallic snowflakes

New approaches to the mystery of why ice is slippery

WATER WORLD
How the 'hell planet' got so hot

Southern hemisphere's biggest radio telescope begins search for ET signatures

An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

WATER WORLD
The PI's Perspective: Extended Mission 2 Begins!

NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.