24/7 Space News
CHIP TECH
Researchers pioneer process to stack micro-LEDs
Illustration of stacked LEDs
Researchers pioneer process to stack micro-LEDs
by Staff Writers
Atlanta GA (SPX) Feb 13, 2023

Put on a virtual reality headset and, chances are, it will look like you are viewing the world through a screen door. Current flat panel displays use pixels that are visible to the naked eye, along with small bits of unlit dark space between each pixel that can appear as a black, mesh-like grid.

Now, researchers from the Georgia Institute of Technology, in collaboration with researchers from the Massachusetts Institute of Technology (MIT), have developed a new process based on 2D materials to create LED displays with smaller and thinner pixels. Enabled by two-dimensional, materials-based layer transfer technology, the innovation promises a future of clearer and more realistic LED displays.

The team published a paper in the journal Nature in February titled, "Vertical full-colour micro-LEDs via 2D materials-based layer transfer." Co-authors also include researchers from Sejong University in Korea, and from additional institutions in the U.S. and South Korea.

Georgia Tech-Europe Professor Abdallah Ougazzaden and research scientist Suresh Sundaram (who both also hold appointments in Georgia Tech's School of Electrical and Computer Engineering) collaborated with researchers from MIT to turn the conventional LED manufacturing process on its head - literally. Instead of using prevailing processes based on laying red, green, and blue (RGB) LEDs side by side, which limits pixel density, the team vertically stacked freestanding, ultrathin RGB LED membranes, achieving an array density of 5,100 pixels per inch - the smallest pixel size reported to date (4 microns) and the smallest-ever stack height - all while delivering a full commercial range of colors. This ultra-small vertical stack was achieved via the technology of van der Waals epitaxy on 2D boron nitride developed at the Georgia Tech-Europe lab and the technology of remote epitaxy on graphene developed at MIT.

The study showed that the world's thinnest and smallest pixeled displays can be enabled by an active layer separation technology using 2D materials such as graphene and boron to enable high array density micro-LEDs resulting in full-color realization of micro-LED displays.

One unique facet of the two-dimensional, material-based layer transfer (2DLT) technique is that it allows the reuse of epitaxial wafers. Reusing this costly substrate could significantly lower the cost for manufacturing smaller, thinner, and more realistic displays.

"We have now demonstrated that this advanced 2D, materials-based growth and transfer technology can surpass conventional growth and transfer technology in specific domains, such as in virtual and augmented reality displays," said Ougazzaden, the lead researcher for the Georgia Tech team.

These advanced techniques were developed in metalorganic chemical vapor deposition (MOCVD) reactors, the key tool for LED production at the wafer scale. The 2DLT technique can be replicated on an industrial scale with high throughput yield. The technology has the potential to bring the field of virtual and augmented reality to the next level, enabling the next generation of immersive, realistic micro-LED displays.

"This emerging technology has a tremendous potential for flexible electronics and the heterogenous integration in opto-electronics, which we believe will develop new functionalities and attract industry to develop commercial products from smartphone screens to medical devices," Ougazzaden said.

Research Report:Vertical full-colour micro-LEDs via 2D materials-based layer transfer

Related Links
Georgia Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Scientists boost quantum signals while reducing noise
Boston MA (SPX) Feb 10, 2023
A certain amount of noise is inherent in any quantum system. For instance, when researchers want to read information from a quantum computer, which harnesses quantum mechanical phenomena to solve certain problems too complex for classical computers, the same quantum mechanics also imparts a minimum level of unavoidable error that limits the accuracy of the measurements. Scientists can effectively get around this limitation by using "parametric" amplification to "squeeze" the noise - a quantum phe ... read more

CHIP TECH
Bringing more power to Space Station

NASA's Aerospace Safety Advisory Panel releases 2022 Annual Report

Design a spacesuit for ESA

Setting sail for safer space

CHIP TECH
Vulcan: Rocket stacked for inaugural launch

SpaceX to test-fire all 33 Starship booster engines Thursday

Launches of Busek Thrusters push OneWeb constellation towards completion

SpaceX launches Hispasat's Amazonas Nexus communication satellite

CHIP TECH
Preparing to drill Dinira: Sols 3737-3738

Spanish lagoon used to better understand wet-to-dry transition of Mars

Mars rover finds rippled rocks caused by waves: NASA

Mars Helicopter at Three Forks

CHIP TECH
China's Deep Space Exploration Lab eyes top global talents

Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

CHIP TECH
Space Daily retools to AI/ML centric Content Management System

FCC greenlights Amazon's Project Kuiper to deploy 3,236 satellites in LEO

AST SpaceMobile announces collaboration with TIM

OneWeb and Kazakhstan National Railways to work together

CHIP TECH
'Magic' solvent creates stronger thin films

High efficiency mid- and long-wave optical parametric oscillator pump source and its applications

Smart contact lens with navigation function, made with 3D printer

Researchers detail never-before-seen properties in a family of superconducting Kagome metals

CHIP TECH
New models shed light on life's origin

Researchers focus AI on finding exoplanets

A nearby potentially habitable Earth-mass exoplanet

Two nearby exoplanets might be habitable

CHIP TECH
SwRI models explain canyons on Pluto moon

NASA's Juno Team assessing camera after 48th flyby of Jupiter

Webb spies Chariklo ring system with high-precision technique

Europe's JUICE spacecraft ready to explore Jupiter's icy moons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.