![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Taipei, Taiwan (SPX) Aug 03, 2022
Researchers have harnessed the light-guiding properties of spider silk to develop a sensor that can detect and measure small changes in the refractive index of a biological solution, including glucose and other types of sugar solutions. The new light-based sensor might one day be useful for measuring blood sugar and other biochemical analytes. "Glucose sensors are crucial to people with diabetes, but these devices tend to be invasive, uncomfortable and not cost-efficient," said research team leader Cheng-Yang Liu from National Yang Ming Chiao Tung University in Taiwan. "With spider silk attracting attention for its superior optomechanical properties, we wanted to explore using this biocompatible material to optically detect various sugar concentrations in real-time." Liu and colleagues from Taiwan Instrument Research Institute and Taipei Medical University describe their new sensor in the Optica Publishing Group journal Biomedical Optics Express. They show that it can be used to determine concentrations of fructose, sucrose and glucose sugars based on changes in a solution's refractive index. Spider silk is ideal for this application because it can not only transmit light like an optical fiber but is also very strong and elastic. "Our new spider silk-based fiber optic sugar sensor is practical, compact, biocompatible, cost-effective and highly sensitive," said Liu. "With further development, it could lead to better at-home medical monitoring devices and point-of-care diagnostic and testing devices."
From silk to sensor This process formed a thread-like structure with two ends. To use the fiber to take measurements, the researchers immersed one end in a liquid sample and connected the other end to a light source and a spectrometer. This allowed the researchers to detect the refractive index of the solution and use it to determine the type of sugar and its concentration. "The spider silk-based sugar sensor is reusable, cost-effective, easy to use and offers real-time detection," said Liu. "Moreover, because it is compact it could allow access to hard-to-reach areas such as the brain and heart. With further development, it is also hoped that this silk-based fiber optic sugar sensor could be used in implantable medical devices and treatment strategies in biomedical applications."
Consistent, accurate readings To quantitatively determine the performance of the silk-based fiber optic sensor, the researchers compared the light intensity spectra produced by the sensor with refractive index measurements acquired with a commercial refractometer. The sensor was able to both identify the type of sugar in the solution and provide a readout of the concentration. "The measurement precision and sensing sensitivity we achieved suggests that the sensor can accurately estimate the concentration of an unknown sugar solution," said Liu. "Moreover, the sensing sensitivity for our proposed sensor completely encompasses the range of sugar concentrations found in human blood." Before the sensor can be used for real-time measurements in a clinic or home-use device it will be necessary to improve its accuracy and enhance its stability under environmental changes so that it can be used for longer periods of time. The researchers are also working on software that would allow the sensor to be used with mobile devices for point-of-care readings. They also want to extend the sensor's functionality so that it could be used to measure different biochemical components in human blood such as lactose and fat.
Research Report:"Biocompatible spider silk-based metal-dielectric fiber optic sugar sensor"
![]() ![]() Engineers repurpose photography technique to make stretchy, color-changing films Boston MA (SPX) Aug 03, 2022 Imagine stretching a piece of film to reveal a hidden message. Or checking an arm band's color to gauge muscle mass. Or sporting a swimsuit that changes hue as you do laps. Such chameleon-like, color-shifting materials could be on the horizon, thanks to a photographic technique that's been resurrected and repurposed by MIT engineers. By applying a 19th-century color photography technique to modern holographic materials, an MIT team has printed large-scale images onto elastic materials that when st ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |