. 24/7 Space News .
TIME AND SPACE
Researchers apply the squeeze to better detect stellar-mass black holes
by Staff Writers
Canberra, Australia (SPX) Nov 01, 2019

file illustration only

Scientists at The Australian National University (ANU) have found a way to better detect all collisions of stellar-mass black holes in the universe.

Stellar-mass black holes are formed by the gravitational collapse of a star. Their collisions are some of the most violent events in the universe, creating gravitational waves or ripples in space-time. These ripples are miniscule and detected using laser interferometers. Until now, many signals have been drowned out by so-called quantum noise on the laser light pushing the mirrors of the laser interferometer around - making the measurements fuzzy or imprecise.

The researchers' new method, called 'squeezing,' dampens quantum noise making measurements more precise, with the findings published in Nature Photonics. The breakthrough will be critical for next-generation detectors, which are expected to come online within the next 20 years.

One of the researchers involved, Dr. Robert Ward, said further experiments were being prepared to confirm the team's proof of concept for a new device to dampen the effect of quantum noise. "The detectors use particles of light called photons from a laser beam to sense the change in position of widely separate mirrors," said Dr. Ward, from the ANU Research School of Physics and the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav).

"However, the detectors are so sensitive that just the random quantum variability in the number of photons can disturb the mirrors enough to mask the wave-induced motion."

The researchers have shown that squeezing reduces this variability, making detectors more sensitive.

The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors in the United States and the European Gravitational Observatory's detector in Italy called Virgo have detected the mergers of two black holes, the collision of two neutron stars and possibly also a black hole eating a neutron star.

ANU plays a lead role in Australia's partnership with LIGO. Other members of the quantum squeezer team include Professor David McClelland, PhD scholar Min Jet Yap and Dr. Bram Slagmolen. "The 'quantum squeezers' we designed at ANU along with other upgrades for the current LIGO detectors have greatly improved their sensing capabilities," Dr. Slagmolen said.

Mr. Yap said the latest experiment proves that scientists can cancel out other quantum noise that can affect the sensing capabilities of detectors. "The new-generation LIGO detectors will have the capability to detect every black-hole smash in the universe at any given moment," he said.

The LIGO team plans to design and build the upgraded quantum squeezers within the next few years. The new devices could be retrofitted to the current LIGO detectors, enabling scientists to detect many more violent events much further into the universe.

Research Report: "Broadband Reduction of Quantum Radiation Pressure Noise via Squeezed Light Injection"


Related Links
Australian National University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
How to spot a wormhole if they exist
Buffalo NY (SPX) Oct 24, 2019
A new study outlines a method for detecting a speculative phenomenon that has long captured the imagination of sci-fi fans: wormholes, which form a passage between two separate regions of spacetime. Such pathways could connect one area of our universe to a different time and/or place within our universe, or to a different universe altogether. Whether wormholes exist is up for debate. But in a paper published on Oct. 10 in Physical Review D, physicists describe a technique for detecting these ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
US vows closer cooperation with French space agency

Nanoracks and Kayser to jointly open temperature controlled microgravity research on ISS

Travel boom has not made world smaller, says writer Pico Iyer

Falklands banking on king penguins to drive nature tourism

TIME AND SPACE
US Air Force hosts hypersonics pitch day

DARPA updates competitor field for flexible, responsive launch to orbit

Air-breathing engine precooler achieves record-breaking Mach 5 performance

New rocket fairing design offers smoother quieter ride

TIME AND SPACE
Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

TIME AND SPACE
China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

TIME AND SPACE
European network of operations centres takes shape

SpaceX to launch 42,000 satellites

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

TIME AND SPACE
Las Cumbres helping to develope a Cyberinfrastructure Institute for Astronomical Data

What About Space Traffic Management?

New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity

OMG developing new standard for interface for Software Defined Radios

TIME AND SPACE
TESS reveals an improbable planet

Building blocks of all life gain new understanding

Simulations explain giant exoplanets with eccentric, close-in orbits

Cascades of gas around young star indicate early stages of planet formation

TIME AND SPACE
SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.