. | . |
Research provides insights into Sun's past, future by Staff Writers San Antonio TX (SPX) Dec 13, 2018
Andres Munoz-Jaramillo and Jose Manuel Vaquero, from Southwest Research Institute and University of Extremadura, respectively, have developed a new technique for looking at historic solar data to distinguish trustworthy observations from those that should be used with care. This work is critical to understanding the Sun's past and future as well as whether solar activity plays a role in climate change. "Scientists have been monitoring solar activity since Galileo made the first drawings in 1612 by counting sunspots and groups of sunspots," said SwRI's Dr. Andres Munoz-Jaramillo, a senior research scientist who is first author of a paper in Nature Astronomy outlining the research. "However, putting all observations in perspective is quite challenging due to wide-ranging observation techniques and telescope magnifications used. We see much more now and our understanding of what we see changes the way we count spots." The team created a technique that takes all historic data gathered and digitized thus far and combines them visually, to provide a complete picture of the data we have and where are we missing information. Roughly every 11 years, the magnetic structure and activity of the Sun cycle between periods known as solar minimum and solar maximum. During solar maximum, the Sun emits high levels of solar radiation, ejects large amounts solar material and displays large numbers of intense sunspots, flares and other phenomena. During solar minimum, this activity is muted. Changes on the Sun cause effects in space, in the atmosphere and on Earth's surface. The Sun also experiences century-long variations, including periods of abnormally low solar activity called grand minima. Maunder Minimum refers to a 70-year period between 1645 and 1715 when observations revealed thousands of days without sunspots. The term was the title of a 1976 paper that first identified these longer cycles, named for a husband-wife team of solar astronomers from the late 17th century. In contrast, modern observations typically record hundreds of days without sunspots over similar periods of time. "Scientists are investigating whether Maunder Minimum could serve as archetype of a grand minimum in magnetic activity for the Sun and other stars," Munoz said. However, data prior to, during, and after the Maunder Minimum is less reliable and lacks the precision and coverage of today's measurements. Recent reevaluations of sunspot observations have yielded a conflicted view on the evolution of solar activity over the last 400 years. "Due to our lack coverage we don't know if the Sun took decades to recover from the Maunder Minimum to the levels of solar activity we see today, or if it was quick as if a switch had been turned on," Munoz said. "There is currently a team of experts from all over the world working hard to find the best way of combining these data. In the meantime, one has to be very careful when using historic sunspot data to study potential links between the Sun and changes in terrestrial climate, given that these effects would be complex and subtle. Our work uses historical data to provide context to users of these estimates that may not be aware of their limitations."
Research Report: "Visualization of the Challenges and Limitations of the Long-Term Sunspot Number Record," Andres Munoz-Jaramillo et al., 2018 Dec. 10, Nature Astronomy
Prediction of Sun's Activity Over the Next Decade Kolkata, India (SPX) Dec 07, 2018 The Sun's activity influences environmental conditions in space, adversely affecting satellites and space-based technologies such as telecommunications and navigational networks. The Sun is also the primary natural source of energy for Earth's climate. The Sun's activity level changes, but predicting these changes has been challenging. Now a team of two scientists from the Center of Excellence in Space Sciences India at IISER Kolkata has made a prediction for the upcoming sunspot cycle which revea ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |