. | . |
Replacing animal testing with synthetic cell scaffolds by Staff Writers Houghton MI (SPX) Feb 14, 2020
In the field of cancer research, the idea that scientists can disrupt cancer growth by changing the environment in which cancerous cells divide is growing in popularity. The primary way researchers have tested this theory is to conduct experiments using animals. Smitha Rao's cell scaffolding research aims to replace animal testing in cancer research with electrospun synthetics. Rao, assistant professor of biomedical engineering at Michigan Technological University, recently published "Engineered three-dimensional scaffolds modulating fate of breast cancer cells using stiffness and morphology related cell adhesion" in the journal IEEE Open Journal of Engineering in Medicine and Biology. Rao's coauthors are doctoral student Samerender Hanumantharao, master's student Carolynn Que and undergraduate student Brennan Vogl, all Michigan Tech biomedical engineering students.
Standardizing with Synthetics "Synthetic ECMs are created by electrospinning matrices from polymers such as polycaprolactone and are more consistent for research than using cells from different kinds of animals," Hanumantharao said. "In my lab the focus has been on standardizing the process and using synthetic materials to keep the same chemical formulation of a scaffold, but change the physical structure of the fibers that are produced," Rao said, noting that changing the type of polymer or adding solvents to polymers introduces too many variables, which could affect the way cells grow on the scaffolds. Rao and her fellow researchers, therefore, can compare separate cell lines with different scaffold alignments by changing just one aspect of the experiment: voltage. By changing the voltage at which the polymer is spun, the researchers can alter the shape of the scaffolds, whether honeycombed, mesh or aligned. Rao's team published recently in Royal Chemistry Society Advances about manipulating electric fields to achieve different scaffold patterns. Rao's team is working with Dipole Materials to explore scaling up the process. Rao and her fellow researchers used four different cell lines to test the efficacy of the electrospun scaffolds: 184B5, which is normal breast tissue, as a control; MCF-7, a breast adenocarcinoma; MCF10AneoT, a premalignant cell line; and MDA-MB-231, a triple negative adenocarcinoma-metastatic, a very difficult-to-detect cancer. "We can study why and how cancer cells metastasize," Rao said. "We can understand in a true 3D system why pre-metastatic cells become metastatic, and provide tools to other researchers to study signaling pathways that change between pre-malignant and malignant cells."
Avenues for Future Research In the future, scientists may be able to engineer cell scaffolding--stiffness, structure and shape--to make the area around a tumor in a person's body a far less hospitable place for cancer cells to grow.
Superior 'bio-ink' for 3D printing pioneered New Brunswick NJ (SPX) Feb 11, 2020 Rutgers biomedical engineers have developed a "bio-ink" for 3D printed materials that could serve as scaffolds for growing human tissues to repair or replace damaged ones in the body. The study was published in the journal Biointerphases. Bioengineered tissues show promise in regenerative, precision and personalized medicine; product development; and basic research, especially with the advent of 3D printing of biomaterials that could serve as scaffolds, or temporary structures to grow tissue ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |