. | . |
Rare earth element synthesis confirmed in neutron star mergers by Staff Writers Tokyo, Japan (SPX) Oct 27, 2022
A group of researchers has, for the first time, identified rare earth elements produced by neutron star mergers. When two neutron stars spiral inwards and merge, the resulting explosion produces a large amount of the heavy elements that make up our Universe. The first confirmed example of this process was an event in 2017 named GW 170817. Yet, even now 5 years later, identifying the specific elements created in neutron star mergers has eluded scientists, except for strontium identified in the optical spectra. A research group led by Nanae Domoto, a graduate student at the Graduate School of Science at Tohoku University and a research fellow at the Japan Society for the Promotion of Science (JSPS), has systematically studied the spectra from this kilonova-bright emissions caused by the radioactive decay of freshly synthesized nuclei that were ejected during the GW 170817 merger. Based on comparisons of detailed kilonovae spectra simulations produced by the supercomputer "ATERUI II" at the National Astronomical Observatory of Japan, the team found that the rare earth elements lanthanum and cerium can reproduce the near-infrared spectral features seen in 2017. Until now, the existence of rare earth elements has only been hypothesized based on the overall evolution of the brightness of the kilonova, but not confirmed from the spectral features. "This is the first direct identification of rare elements in the spectra of neutron star mergers, and it advances our understanding of the origin of elements in the Universe," Dotomo said. "This study used a simple model of ejected material. Looking ahead, we want to factor in multi-dimensional structures to grasp a bigger picture of what happens when stars collide," Dotomo added.
Research Report:"Lanthanide Features in Near-infrared Spectra of Kilonovae"
Observation puzzles researchers Bonn, Germany (SPX) Oct 27, 2022 An international team of astrophysicists has made a puzzling discovery while analyzing certain star clusters. The University of Bonn played a major role in the study. The finding challenges Newton's laws of gravity, the researchers write in their publication. Instead, the observations are consistent with the predictions of an alternative theory of gravity. However, this is controversial among experts. The results have now been published in the Monthly Notices of the Royal Astronomical Society. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |