|
. | . |
|
by Staff Writers Vienna, Austria (SPX) Jan 15, 2015
It is easy to measure electric current. But it is extremely hard to watch the individual electrons which make up this current. Electrons race through the metal with a speed of several million meters per second, and the distance they have to cover between two adjacent atoms is very small. This means that tiny time intervals have to be resolved in order to watch the electrons dashing through the metal. Measurements in Garching (Germany) and theoretical calculations at the Vienna University of Technology (Austria) have now made this possible. As it turns out, the motion of the electrons in the metal is remarkably similar to ballistic motion in free space. The results have now been published in the journal "Nature".
The Tiny Timescales of the Quantum World An attosecond is a billionth of a billionth of a second (10^-18 seconds). This is approximately the time it takes light to travel the distance from one atom to the next. Using ultrashort laser pulses, time can now be measured with a precision in the attosecond range. The data which has now been published in "Nature" was measured at the Max Planck Institute for Quantum Optics in Garching, in a collaboration with TU Munich, the Fritz Haber Institute in Berlin, the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg and LMU Munich. At the Vienna University of Technology, theoretical models and large-scale computer simulations have been developed, in order to analyse and interpret the results.
Racing Electrons The distance of this race can be tuned: one to five atomic layers of magnesium are deposited on tungsten. "The thicker the magnesium layer, the larger the lead of its electrons compared to the electrons coming from the tungsten layer", says Christoph Lemell (TU Vienna). The simple relationship between layer thickness and arrival time shows that the electrons travel through the metal ballistically, on rather undisturbed and straight lines. Complex scattering processes do not play an important role on theses time and length scales. For precise timing, it is crucial to have a very well defined finish line. For the photo-finish, a second laser was used. It influences the electrons the moment they left the metal, but not before. The laser beam must not penetrate the metal. "Within a distance shorter than the spacing between the metal atoms, the intensity of the laser field changes dramatically", says Georg Wachter (TU Vienna). The field of the laser beam is reduced to almost zero in the outermost layer, whereas right outside the metal the electrons immediately enter a strong laser field. This sharp contrast is the reason these extremely precise time measurements become possible. The new findings are expected to help with the miniaturization of electronic and photonic elements - and they are another proof for the amazing possibilities of attosecond physics. "This new area of research gives us new methods to develop quantum technologies and study fundamental questions of materials science and electronics", says Joachim Burgdorfer.
Related Links Vienna University of Technology Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |