![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Vienna, Austria (SPX) Feb 27, 2018
It is one of the most astonishing results of physics: when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, will return almost exactly to their starting positions after some time. This "Poincare Recurrence Theorem" is the foundation of modern chaos theory. For decades, scientists have investigated how this theorem can be applied to the world of quantum physics. Now, researchers at TU Wien (Vienna) have successfully demonstrated a kind of "Poincare recurrence" in a multi-particle quantum system. The results have been published in the journal Science.
An Old Question, Revisited His surprising result: every state which is physically possible will be occupied by the system at some point - at least to a very good degree of approximation. If we just wait long enough, at some point all planets will form a straight line, just by coincidence. The gas particles in a box will create interesting patterns, or go back to the state in which they were when the experiment started. A similar theorem can be proved for quantum systems. There, however, completely different rules apply: "In quantum physics, we have to come up with a completely new way of addressing this problem", says Professor Jorg Schmiedmayer from the Institute for Atomic and Subatomic Physics at TU Wien. "For very fundamental reasons, the state of a large quantum system, consisting of many particles, can never be perfectly measured. Apart from that, the particles cannot be seen as independent objects, we have to take into account that they are quantum mechanically entangled." There have been attempts to demonstrate the effect of "Poincare recurrence" in quantum systems, but until now this has only been possible with a very small number of particles, whose state was measured as precisely as possible. This is extremely complicated and the time it takes the system to return to its original state increases dramatically with the number of particles. Jorg Schmiedmayers team at TU Wien, however, chose a different approach: "We are not so much interested in the complete inner state of the system, which cannot be measured anyway", says Bernhard Rauer, first author of the publication. "Instead we want to ask: which quantities can we observe, that tell us something interesting about the system as a whole? And are there times at which these collective quantities return to their initial value?" The team studied the behaviour of an ultracold gas, consisting of thousands of atoms, which is kept in place by electromagnetic fields on a chip. "There are several different quantities describing the characteristics of such a quantum gas - for example coherence lengths in the gas and correlation functions between different points in space. These parameters tell us, how closely the particles are linked by quantum mechanical effects", says Sebastian Erne, who was responsible for the theoretical calculations necessary for the project. "Our everyday intuition is not used to dealing with these quantities, but for a quantum systems, they are crucial."
Recurrence Discovered - in Collective Quantities "By measuring this kind of recurrence, we learn a lot about the collective dynamics of the atoms - for example about the speed of sound in the gas or about scattering phenomena of density waves." The old question, whether quantum systems show recurrences, can finally be answered: Yes, they do - but the concept of recurrence has to be slightly redefined. Instead of trying to map out the complete inner quantum state of a system, which cannot be measured anyway, it makes more sense to concentrate on quantities which can be measured in quantum experiments. These quantities can be observed to drift away from their initial value - and to return to their initial state eventually.
![]() ![]() New hole-punched crystal clears a path for quantum light College Park MD (SPX) Feb 20, 2018 Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the University of Maryland's Joint Quantum Institute (JQI), led by Associate Professor Mohammad Hafezi and Professor Edo Waks, has created a photonic chip that both generates single photons, and steers them around. Hafezi and Waks are both JQI Fellows with affiliations in the Departments ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |