. 24/7 Space News .
TIME AND SPACE
Quantum recurrence: Everything goes back to the way it was
by Staff Writers
Vienna, Austria (SPX) Feb 27, 2018

illustration only

It is one of the most astonishing results of physics: when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, will return almost exactly to their starting positions after some time.

This "Poincare Recurrence Theorem" is the foundation of modern chaos theory. For decades, scientists have investigated how this theorem can be applied to the world of quantum physics. Now, researchers at TU Wien (Vienna) have successfully demonstrated a kind of "Poincare recurrence" in a multi-particle quantum system. The results have been published in the journal Science.

An Old Question, Revisited
At the end of the 19th century, the French scientist Henri Poincare studied systems which cannot be fully analysed with perfect precision - for example solar systems consisting of many planets and asteroids, or gas particles, which keep bumping into each other.

His surprising result: every state which is physically possible will be occupied by the system at some point - at least to a very good degree of approximation. If we just wait long enough, at some point all planets will form a straight line, just by coincidence. The gas particles in a box will create interesting patterns, or go back to the state in which they were when the experiment started.

A similar theorem can be proved for quantum systems. There, however, completely different rules apply: "In quantum physics, we have to come up with a completely new way of addressing this problem", says Professor Jorg Schmiedmayer from the Institute for Atomic and Subatomic Physics at TU Wien. "For very fundamental reasons, the state of a large quantum system, consisting of many particles, can never be perfectly measured. Apart from that, the particles cannot be seen as independent objects, we have to take into account that they are quantum mechanically entangled."

There have been attempts to demonstrate the effect of "Poincare recurrence" in quantum systems, but until now this has only been possible with a very small number of particles, whose state was measured as precisely as possible. This is extremely complicated and the time it takes the system to return to its original state increases dramatically with the number of particles.

Jorg Schmiedmayers team at TU Wien, however, chose a different approach: "We are not so much interested in the complete inner state of the system, which cannot be measured anyway", says Bernhard Rauer, first author of the publication. "Instead we want to ask: which quantities can we observe, that tell us something interesting about the system as a whole? And are there times at which these collective quantities return to their initial value?"

The team studied the behaviour of an ultracold gas, consisting of thousands of atoms, which is kept in place by electromagnetic fields on a chip. "There are several different quantities describing the characteristics of such a quantum gas - for example coherence lengths in the gas and correlation functions between different points in space.

These parameters tell us, how closely the particles are linked by quantum mechanical effects", says Sebastian Erne, who was responsible for the theoretical calculations necessary for the project. "Our everyday intuition is not used to dealing with these quantities, but for a quantum systems, they are crucial."

Recurrence Discovered - in Collective Quantities
By measuring such quantities, which do not refer to single particles, but characterize the system as a whole, it was indeed possible to observe the long-sought quantum recurrence. And not only that: "With our atom chip, we can even influence the time it takes the system to return to one particular state", says Jorg Schmiedmayer.

"By measuring this kind of recurrence, we learn a lot about the collective dynamics of the atoms - for example about the speed of sound in the gas or about scattering phenomena of density waves."

The old question, whether quantum systems show recurrences, can finally be answered: Yes, they do - but the concept of recurrence has to be slightly redefined. Instead of trying to map out the complete inner quantum state of a system, which cannot be measured anyway, it makes more sense to concentrate on quantities which can be measured in quantum experiments. These quantities can be observed to drift away from their initial value - and to return to their initial state eventually.

Research paper


Related Links
Vienna University of Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New hole-punched crystal clears a path for quantum light
College Park MD (SPX) Feb 20, 2018
Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the University of Maryland's Joint Quantum Institute (JQI), led by Associate Professor Mohammad Hafezi and Professor Edo Waks, has created a photonic chip that both generates single photons, and steers them around. Hafezi and Waks are both JQI Fellows with affiliations in the Departments ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
ISS Expedition 54 crew land safely in Kazakhstan

Florida Poly developing Happy Suit for Astronauts

Shiseido researches stress in closed-off environments to simulate ISS conditions

Cosmonaut, two US astronauts return to Earth from ISS

TIME AND SPACE
Russia's Energomash tests RD-180 engine made for US Atlas rocket

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

SLS Intertank loaded for shipment, structural testing

Space-X lobs Spanish military satellite into orbit

TIME AND SPACE
Life in world's driest desert seen as sign of potential life on Mars

Mars Odyssey Observes Martian Moons

Atacama Desert study offers glimpse of what life on Mars could look like

Dormant desert life hints at possibilities on Mars

TIME AND SPACE
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

TIME AND SPACE
Iridium Certus readies for takeoff with aviation service providers

Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

TIME AND SPACE
Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

TIME AND SPACE
Alien life in our Solar System? Study hints at Saturn's moon

Model based on hydrothermal sources evaluate possibility of life Jupiter's icy moon

When do aging brown dwarfs sweep the clouds away?

Proxima Centauri's no good, very bad day

TIME AND SPACE
Chasing a stellar flash with assistance from GAIA

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.