Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Quantum physics mimics spooky action into the past
by Staff Writers
Vienna, Austria (SPX) Apr 25, 2012


This abstract illustration shows four particles of light can be produced and manipulated in such a way that one can later decide in which quantum state two of the particles have been. Credit: Jon Heras, Equinox Graphics Ltd.

Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Vienna Center for Quantum Science and Technology (VCQ) have, for the first time, demonstrated in an experiment that the decision whether two particles were in an entangled or in a separable quantum state can be made even after these particles have been measured and may no longer exist.

Their results will be published this week in the journal "Nature Physics".

Entangled States
According to the Austrian physicist Erwin Schrodinger, entanglement is the characteristic trait of quantum mechanics. In addition to its crucial role for the foundations of physics, entanglement is also a key resource for upcoming quantum information technologies such as quantum cryptography and quantum computation. Entangled particles exhibit correlations which are stronger and more intricate than those allowed by the laws of classical physics.

If two particles are in an entangled quantum state, they have perfectly defined joint properties at the expense of losing their individual properties. This is like having two dice which have no orientation until they are subject to measurement, upon which they certainly show the same (random) side up. In contrast, so-called separable quantum states allow for a classical description, because every particle has well-defined properties on its own.

Two dice, each one of them with its own well-defined orientation, are in a separable state. Now, one would think that at least the nature of the quantum state must be an objective fact of reality. Either the dice are entangled or not. Zeilinger's team has now demonstrated in an experiment that this is not always the case.

Exciting realization of a "Gedankenexperiment"
The authors experimentally realized a "Gedankenexperiment" called "delayed-choice entanglement swapping", formulated by Asher Peres in the year 2000. Two pairs of entangled photons are produced, and one photon from each pair is sent to a party called Victor. Of the two remaining photons, one photon is sent to the party Alice and one is sent to the party Bob. Victor can now choose between two kinds of measurements.

If he decides to measure his two photons in a way such that they are forced to be in an entangled state, then also Alice's and Bob's photon pair becomes entangled. If Victor chooses to measure his particles individually, Alice's and Bob's photon pair ends up in a separable state. Modern quantum optics technology allowed the team to delay Victor's choice and measurement with respect to the measurements which Alice and Bob perform on their photons.

"We found that whether Alice's and Bob's photons are entangled and show quantum correlations or are separable and show classical correlations can be decided after they have been measured", explains Xiao-song Ma, lead author of the study.

According to the famous words of Albert Einstein, the effects of quantum entanglement appear as "spooky action at a distance". The recent experiment has gone one remarkable step further. "Within a naive classical word view, quantum mechanics can even mimic an influence of future actions on past events", says Anton Zeilinger.

Publication in "Nature Physics": Experimental delayed-choice entanglement swapping: Xiao-song Ma, Stefan Zotter, Johannes Kofler, Rupert Ursin, Thomas Jennewein, Caslav Brukner, and Anton Zeilinger. Nature Physics (2012) DOI: 10.1038/NPHYS2294.

.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Raising the prospects for quantum levitation
Washington DC (SPX) Apr 23, 2012
More than half-a-century ago, the Dutch theoretical physicist Hendrik Casimir calculated that two mirrors placed facing each other in a vacuum would attract. The mysterious force arises from the energy of virtual particles flitting into and out of existence, as described by quantum theory. Now Norio Inui, a scientist from the University of Hyogo in Japan, has predicted that in certain circ ... read more


TIME AND SPACE
NASA's Lunar Reconnaissance Orbiter Brings 'Earthrise' to Everyone

Winners of 19th Annual NASA Great Moonbuggy Race Announced

Russian Space Agency eyes Moon explorations

Russia postpones Luna-Glob moon mission

TIME AND SPACE
Mars Astronauts Could Risk DNA Damage

Asteroid sites hint at life on Mars

WSU astrobiologist proposes fleet of probes to seek life on Mars

People to Land on Mars in Next 40 Years

TIME AND SPACE
Boeing, NASA Sign Agreement on Mission Support for CST-100

Parachutes for NASA crew capsule tested

NASA Announces 16th Undersea Exploration Mission Dates and Crew

Dwindling US Space Budget Worries Scientist

TIME AND SPACE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

TIME AND SPACE
Russian cargo ship docks at International Space Station

Russian Cargo Craft Launches to Station

Commercial Platform Offers Exposure at ISS

Learn to dock ATV the astronaut way

TIME AND SPACE
Assembly begins for the third Ariane 5 to be launched in 2012

ILS Proton Successfully Launches Y1B Satellite For Yahsat

SpaceX aims for May 7 launch to ISS

SpaceX delays first private launch to space station

TIME AND SPACE
Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

TIME AND SPACE
360-Degree MEADS Radar Begins Integration Testing

Apple profit soars on rocketing iPhone-iPad sales

China enjoying fruit of Apple's labor

US commission says iPhone infringes Motorola patent




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement