. | . |
Quantum photonics based on metasurfaces by Staff Writers Nanjing, China (SPX) Oct 01, 2021
In a new publication from Opto-Electronic Advances researchers led by Professor Shuming Wang from Nanjing University, Nanjing, China discuss quantum photonics based on metasurfaces. This paper summarizes recent works on quantum optics based on micro/nano structures. Since its birth, quantum optics has been full of controversies with the locality and reality of classical physics versus the non-locality and uncertainty of quantum physics. Technologies based on new quantum physics will revolutionize human life. To better serve the human society with quantum technologies, it is particularly important to prepare micro/nano optical devices with strong stability, high efficiency and scalability. This not only makes the exploration of quantum physics more convenient and stable, but also introduces new degrees of freedom to enrich the possibilities of quantum technologies. This paper provides a systematic and comprehensive summary of quantum optics based on metasurfaces, including quantum plasmonics, quantum sources, manipulation of quantum states, quantum applications and interactions with quantum emitters. With the development of quantum science and technology, more and more attention will be paid to the application of quantum physics, rather than the breakthrough of quantum mechanisms, so miniaturization is an inevitable trend. It is necessary to compare the advantages and disadvantages of different quantum optical research systems, which can be roughly divided into on-chip quantum optics, bulk optical element quantum optics and quantum optics based on metasurfaces. On-chip quantum optics are the most integrated system among these three categories, but the light field manipulation function of on-chip quantum optics is far less rich than the latter two. Bulk optical element quantum optics satisfy the rich light field manipulation function, but its stability, scalability is much lower than the quantum optics based on metasurfaces, thus it can be seen that metasurfaces has great potential in quantum optics, and metasurfaces is not just an integrated version of optical elements, its abundant light field control function to discover new quantum physics gives new momentum. For researchers who are about to embark on this field or who are already working in this field, a comprehensive and systematic understanding of the recent development of this emerging field can help them build on this reasonable framework and explore deeper physics based on predecessors.
Research Report: "Quantum photonics based on metasurface"
Optically generated quantum fluids of light reveal exotic matter-wave states in condensed matter physics Moscow, Russia (SPX) Oct 01, 2021 Researchers from Skoltech and the University of Southampton, U.K., used all-optical methods to create an artificial lattice whose nodes house polaritons - quasiparticles that are half-light and half-matter excitations in semiconductors. This so-called Lieb lattice, which usually does not occur in nature, enabled the team to demonstrate breakthrough results important for condensed matter physics. From the applications perspective, the laser-generated polariton lattice, reported in Nature Communicat ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |