. 24/7 Space News .
TIME AND SPACE
Quantum emitters: Beyond crystal clear to single-photon pure
by Staff Writers
Seoul, South Korea (SPX) Sep 03, 2021

Nanoscale luminescence quenching occurs when a focused ion beam is irradiated. By selectively quenching the uncorrelated light, one can increase the single-photon purity from the quantum emitter without optical degradation and structural destruction.

Photons - fundamental particles of light - are carrying these words to your eyes via the light from your computer screen or phone. Photons play a key role in the next-generation quantum information technology, such as quantum computing and communications. A quantum emitter, capable of producing a single, pure photon, is the crux of such technology but has many issues that have yet to be solved, according to KAIST researchers.

A research team under Professor Yong-Hoon Cho has developed a technique that can isolate the desired quality emitter by reducing the noise surrounding the target with what they have dubbed a 'nanoscale focus pinspot.' They published their results on June 24 in ACS Nano.

"The nanoscale focus pinspot is a structurally nondestructive technique under an extremely low dose ion beam and is generally applicable for various platforms to improve their single-photon purity while retaining the integrated photonic structures," said lead author Yong-Hoon Cho from the Department of Physics at KAIST.

To produce single photons from solid state materials, the researchers used wide-bandgap semiconductor quantum dots - fabricated nanoparticles with specialized potential properties, such as the ability to directly inject current into a small chip and to operate at room temperature for practical applications. By making a quantum dot in a photonic structure that propagates light, and then irradiating it with helium ions, researchers theorized that they could develop a quantum emitter that could reduce the unwanted noisy background and produce a single, pure photon on demand.

Professor Cho explained, "Despite its high resolution and versatility, a focused ion beam typically suppresses the optical properties around the bombarded area due to the accelerated ion beam's high momentum. We focused on the fact that, if the focused ion beam is well controlled, only the background noise can be selectively quenched with high spatial resolution without destroying the structure."

In other words, the researchers focused the ion beam on a mere pin prick, effectively cutting off the interactions around the quantum dot and removing the physical properties that could negatively interact with and degrade the photon purity emitted from the quantum dot.

"It is the first developed technique that can quench the background noise without changing the optical properties of the quantum emitter and the built-in photonic structure," Professor Cho asserted.

Professor Cho compared it to stimulated emission depletion microscopy, a technique used to decrease the light around the area of focus, but leaving the focal point illuminated. The result is increased resolution of the desired visual target.

"By adjusting the focused ion beam-irradiated region, we can select the target emitter with nanoscale resolution by quenching the surrounding emitter," Professor Cho said. "This nanoscale selective-quenching technique can be applied to various material and structural platforms and further extended for applications such as optical memory and high-resolution micro displays."

Korea's National Research Foundation and the Samsung Science and Technology Foundation supported this work.

Research Report: "Nanoscale Focus Pinspot for High-Purity Quantum Emitters via Focused-Ion-Beam-Induced Luminescence Quenching"


Related Links
The Korea Advanced Institute Of Science And Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Anchoring single atoms
Vienna, Austria (SPX) Sep 01, 2021
There is a dictum to "never change a running system". New methods can however be far superior to older ones. While to date chemical reactions are mainly accelerated by catalytic materials that comprise several hundreds of atoms, the use of single atoms could provide a new approach for catalysis. An international research team, led by the TU Wien, Austria, has now developed a new method for anchoring individual atoms in a controlled and stable manner on surfaces. This is an important step towards s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
ESA at the 36th Space Symposium

State of Russia's ISS segment sparks safety concerns

Russian cosmonauts to track air leaks with vibration sensors

Can devices that never wear out come into reality?

TIME AND SPACE
DLR Lampoldshausen prepares P5 test stand for the technologies of the future

Application of fission-powered spacecraft in solar system exploration missions

Inspiration4 crew will conduct health research during three day mission

AFRL extends capability for testing solid rocket motors with new equipment

TIME AND SPACE
Ingenuity Mars Helicopter set to fly lower for detailed surface imaging

NASA thinks Mars rover succeeded in taking rock sample

NASA's Mars simulation hopefuls face tough application process

The forecast for Mars? Otherworldly weather predictions

TIME AND SPACE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

TIME AND SPACE
NASA works to give satellite swarms a hive mind

World-leading space venture capital firm announces idea-stage incubator

Roscosmos offered ESA extended use of Soyuz In French Guiana

Space science project funding available for UK space projects

TIME AND SPACE
DARPA announces research teams to advance fundamental science of atomic vapors

New augmented reality applications assist astronaut repairs to Space Station

NASA's Deep Space Network looks to the future

Sand is one of our most used resources, but the industry is not sustainable

TIME AND SPACE
Cold planets exist throughout our Galaxy, even in the Galactic bulge

New class of habitable exoplanets are 'a big step forward' in the search for life

Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.