![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Stuttgart, Germany (SPX) Dec 01, 2021
A promising route towards larger quantum computers is to orchestrate multiple task-optimised smaller systems. To dynamically connect and entangle any two systems, photonic interference emerges as a powerful method, due to its compatibility with on-chip devices and long-distance propagation in quantum networks. One of the main obstacles towards the commercialization of quantum photonics remains the nanoscale fabrication and integration of scalable quantum systems due to their notorious sensitivity to the smallest disturbances in the close environment. This has made it an extraordinary challenge to develop systems that can be used for quantum computing while simultaneously offering an efficient optical interface. A recent result published in Nature Materials shows how the integration obstacle can be overcome. The work is based on a multi-national collaboration with researchers from Universities of Stuttgart (Physics 3), California - Davis, Linkoping and Kyoto, as well as the Fraunhofer Institute at Erlangen, the Helmholtz Centre at Dresden and the Leibniz-Institute at Leipzig. The researchers followed a two-step approach. First, their quantum system of choice is the so-called silicon vacancy centre in silicon carbide, which is known to possess particularly robust spin-optical properties. Second, they fabricated nanophotonic waveguides around these colour centres using gentle processing methods that keep the host material essentially free of damage. "With our approach, we could demonstrate that the excellent spin-optical properties of our colour centres are maintained after nanophotonic integration." says Florian Kaiser, Assistant Professor at the University of Stuttgart, the supervisor of this project. "Thanks to the robustness of our quantum devices, we gained enough headroom to perform quantum gates on multiple nuclear spin qubits. As these spins show very long coherence times, they are excellent for implementing small quantum computers." "In this project, we explored the peculiar triangular shape of photonic devices. While this geometry is of commercial appeal because it provides versatility needed for scalable production, little has been known about its utility for high performing quantum hardware. Our studies reveal that light emitted by the colour centre, which carries quantum information across the chip, can be efficiently propagated through a single optical mode. This is a key conclusion for viability of integration of colour centres with other photonic devices, such as nanocavities, optical fibre and single-photon detectors, needed to realize full functionalities of quantum networking and computing." - says Marina Radulaski, Assistant Professor at the University of California - Davis. What makes the silicon carbide platform particularly interesting are its CMOS compatibility and its heavy usage as high-power semiconductor in electric mobility. The researchers now want to benefit from these aspects to leverage the scalable production of spin-photonics chips. Additionally, they want to implement semiconductor circuitry to electrically initialise and readout the quantum states of their spin qubits. "Maximising electrical control - instead of traditional optical control via lasers - is an important step towards system simplification. The combination of efficient nanophotonics with electrical control will allow us to reliably integrate more quantum systems on one chip, which will result in significant performance gains.", adds Florian Kaiser, "In this sense, we are only at the dawn of quantum technologies with colour centres in silicon carbide. Our successful nanophotonic integration is not only an exciting enabler for distributed quantum computing, but it can also boost the performance of compact quantum sensors."
Research Report: "Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence"
![]() ![]() A simpler design for quantum computers Stanford CA (SPX) Dec 01, 2021 Today's quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum computers that work using photons - particles of light. Photons can easily carry information from one place to another, and photonic quantum computers can operate at room temperature, so this approach is promising. However, although people have successfully created individual qua ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |