|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Vienna, Austria (SPX) Sep 14, 2013
How does a classical temperature form in the quantum world? An experiment at the Vienna University of Technology has directly observed the emergence and the spreading of a temperature in a quantum system. Remarkably, the quantum properties are lost, even though the quantum system is completely isolated and not connected to the outside world. The experimental results are being published in this week's issue of "Nature Physics". The connection between the microscopic world of quantum physics and our everyday experience, which is concerned with much larger objects, still remains puzzling. When a quantum system is measured, it is inevitably disturbed and some of its quantum properties are lost. A cloud of atoms, for example, can be prepared in such away that each atom is simultaneously located at two different places, forming a perfect quantum superposition. As soon as the location of the atoms is measured, however, this superposition is destroyed. All that is left are atoms sitting at some well-defined places. They behave just as classical objects would. In this case, the transition from quantum behavior to classical behavior is initiated by the measurement - a contact with the outside world. But what happens, if a quantum system is not influenced from the outside at all? Can classical properties still emerge?
Disorder in the Quantum World In the experiment, the atom clouds are split into two halves. After a certain time the two halves are compared to each other. In that way, the scientists can measure the amount of quantum mechanical connection between the clouds. Initially, this connection is perfect; all atoms are in a highly ordered quantum state. But as the cloud is a large object consisting of thousands of particles, this order does not remain for long.
Loss of Quantum Properties Without Influence From Outside "The velocity with which the disorder spreads depends on the number of atoms", says Tim Langen. This defines a clear border between the regions which can be described by a classical temperature and regions where quantum properties remain unchanged. After a certain time the disorder has spread over the whole cloud. The remarkable observation is that this loss of quantum properties happens just because of quantum effects inside the atom cloud, without any influence from the outside world. "So far, such a behavior had only been conjectured, but our experiments demonstrate that nature really behaves like this", Jorg Schmiedmayer points out.
Atomic Clouds: A World on its Own That is why the experiment could not just help us to understand the behavior of large atom clouds, it could also help to explain, why the world that we experience every day looks so classical, even though it is governed by quantum laws.
Related Links Vienna University of Technology Understanding Time and Space
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |