A research team from TU Wien (Vienna University of Technology) has now resolved this apparent contradiction, showing that the behavior of entropy in quantum systems is dependent on the definition of entropy being used. By introducing an entropy measure that aligns with quantum theory, the researchers demonstrated that entropy does indeed increase over time in quantum systems, reaching a state of maximal disorder, just as in classical systems.
For instance, consider a box containing balls sorted by color. When the box is shaken, the previously ordered system transitions into a disordered state, increasing its entropy. "This is simply due to the fact that only a few ordered states exist, but many that are similarly disordered," Huber added.
Entropy is also central to the concept of time. "From a physical point of view, this is what defines the direction of time," noted Max Lock of TU Wien. "In the past, entropy was lower; the future is where entropy is higher." This description of time, however, faced a complication within quantum mechanics: John von Neumann showed that the entropy of a quantum system, when fully understood, remains unchanged, and thus time's direction becomes indistinguishable from a quantum perspective.
This uncertainty must be factored into entropy calculations. Instead of considering the entire quantum system's entropy, which remains static, the team proposed focusing on Shannon entropy. This form of entropy takes into account the probabilities of different outcomes, and its value increases when there are many possible measurement results with similar probabilities. As Florian Meier of TU Wien put it, "Shannon entropy is a measure of how much information you gain from the measurement." When there is only one possible outcome, the entropy is zero, and no new information is gained. However, when many outcomes are likely, the entropy is high.
"This shows us that the second law of thermodynamics is also true in a quantum system that is completely isolated from its environment," concluded Marcus Huber. "You just have to ask the right questions and use a suitable definition of entropy."
While these findings have less relevance for small quantum systems, such as a single hydrogen atom, they are critical for understanding large quantum systems used in modern technology. "To describe such many-particle systems, it is essential to reconcile quantum theory with thermodynamics," Huber emphasized. "That's why we also want to use our basic research to lay the foundation for new quantum technologies."
Research Report:Emergence of a Second Law of Thermodynamics in Isolated Quantum Systems
Related Links
Vienna University of Technology
Understanding Time and Space
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |