. | . |
Quantifying spin for future spintronics by Staff Writers Melbourne, Australia (SPX) Nov 04, 2021
A RMIT-led, international collaboration published this week has observed large in-plane anisotropic magnetoresistance (AMR) in a quantum spin Hall insulator and the spin quantization axis of the edge states can be well-defined. A quantum spin Hall insulator (QSHIs) is a two-dimensional state of matter with an insulating bulk and non-dissipative helical edge states that display spin-momentum locking, which are promising options for developing future low-energy nano-electronic and spintronic devices. The FLEET collaboration of researchers at RMIT, UNSW and South China Normal University (China) confirm for the first time the existence of large in-plane AMR in monolayer WTe2 which is a novel QSHI with higher critical temperatures. By allowing electrical conduction without wasted dissipation of energy, such materials could form the basis of a new future generation of ultra-low energy electronics.
Fabricating Monolayer WTE2 Devices Unlike previously-reported quantum-well systems, which could only exhibit quantized edge transport at low temperatures, the recent observation of quantized edge transport at 100 K in a predicted large band-gap QSHI, monolayer WTe2 , has shed more light on the applications of QSHI. "Although we had gained much experience in stacking van der Waals (vdW) heterostructures, fabricating monolayer vdW devices was still challenging for us," the study's first author Dr Cheng Tan says. "Because monolayer WTe2 nanoflakes are difficult to obtain, we firstly focused on a more mature material, graphene, to develop the best way for fabricating monolayer WTe2 vdW devices" says Cheng, who is a FLEET Research Fellow at RMIT University in Melbourne. As the monolayer WTe2 nanoflakes are also very sensitive to the air, protective 'suits of amours' made of inert hBN nanoflakes should be utilized to encapsulate them. Additional, the assembly was carried out in an oxygen- and water-free glove box before series of tests outside. After some effort, the team then successfully fabricated the monolayer WTe2 devices with gate electrodes and observed typical transport behaviours of gated monolayer WTe2. "For materials to be used in future spintronic devices, we need a method to determine spin characteristics, in particular the direction of spin," says Dr Guolin Zheng (also at RMIT). "However, in monolayer WTe2, spin-momentum locking (an essential property of QSHI) and whether spin quantization axis in its helical edge states could be determined had yet to be experimentally demonstrated." Anisotropic magnetoresistance (AMR) is an effective transport measurement method to reveal the relationship between the electrons' spin and momentum when the current is spin-polarized. Considering that the edge states of a QSHI only allow the transport of spin-polarized electrons, the team then used AMR measurements to explore the potential spin-momentum locking in the edge states of monolayer WTe2. "Fortunately, we found the proper method to deal with the monolayer WTe2 nanoflakes," says co-author Dr Feixiang Xiang (UNSW). "So then we performed angular-dependent transport measurements to explore the potential spin features in the edge states."
Performing Anisotropic Magnetoresistance And Defining The Spin Quantization Axis "Fortunately, topological edge states and Rashba splitting induce very different gate-dependent in-plane AMR behaviours, because the band structure under these two situations are still very different." says co-author Prof Alex Hamilton (also at UNSW). "Most of the samples show that minimum of in-plane AMR happens when the magnetic field is nearly perpendicular to the edge current direction." says Cheng. Further theoretical calculations by collaborators at South China Normal University further confirmed that electrons' spins in the edge states of monolayer WTe2 should be always perpendicular to their propagation directions, so-called 'spin-momentum locking'. "The amplitudes of the in-plane AMR observed in monolayer WTe2 is very large, up to 22%" says co-author A/Prof Lan Wang (also at RMIT). "While the previous amplitudes of in-plane AMR in other 3D topological insulators are only around 1%. By AMR measurements, we can also precisely determine the spin quantization axis of the spin polarized electrons in the edge states." "Again, this work demonstrates the promising potential of QSHI for designing and developing novel spintronic devices and prove AMR as a useful tool for the design and development of QSHI-based spintronic devices, which are one of the promising routes for FLEET to realize low-energy devices in future."
Research Report: "Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2"
A superconducting silicon-photonic chip for quantum communication Washington DC (SPX) Nov 02, 2021 Integrated quantum photonics (IQP) is a promising platform for realizing scalable and practical quantum information processing. Up to now, most of the demonstrations with IQP focus on improving the stability, quality, and complexity of experiments for traditional platforms based on bulk and fiber optical elements. A more demanding question is: "Are there experiments possible with IQP that are impossible with traditional technology?" This question is answered affirmatively by a team led jointly by ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |