24/7 Space News
STELLAR CHEMISTRY
Pulsars may make dark matter glow
File illustration of random Pulsar SXP 1062.
Pulsars may make dark matter glow
by Staff Writers
Amsterdam, Netheralnds (SPX) Oct 09, 2023

The central question in the ongoing hunt for dark matter is: what is it made of? One possible answer is that dark matter consists of particles known as axions. A team of astrophysicists, led by researchers from the universities of Amsterdam and Princeton, has now shown that if dark matter consists of axions, it may reveal itself in the form of a subtle additional glow coming from pulsating stars.

Dark matter may be the most sought-for constituent of our universe. Surprisingly, this mysterious form of matter, that physicist and astronomers so far have not been able to detect, is assumed to make up an enormous part of what is out there. No less than 85% of matter in the universe is suspected to be 'dark', presently only noticeable through the gravitational pull it exerts on other astronomical objects. Understandably, scientists want more. They want to really see dark matter - or at the very least, detect its presence directly, not just infer it from gravitational effects. And, of course: they want to know what it is.

Cleaning up two problems
One thing is clear: dark matter cannot be the same type of matter that you and I are made of. If that were to be the case, dark matter would simply behave like ordinary matter - it would form objects like stars, light up, and no longer be 'dark'. Scientists are therefore looking for something new - a type of particle that nobody has detected yet, and that probably only interacts very weakly with the types of particles that we know, explaining why this constituent of our world so far has remained elusive.

There are plenty of clues for where to look. One popular assumption is that dark matter could be made of axions. This hypothetical type of particle was first introduced in the 1970s to resolve a problem that had nothing to do with dark matter. The separation of positive and negative charges inside the neutron, one of the building blocks of ordinary atoms, turned out to be unexpectedly small. Scientists of course wanted to know why. It turned out that the presence of a hitherto undetected type of particle, interacting very weakly with the neutron's constituents, could cause exactly such an effect. The later Nobel Prize winner Frank Wilczek came up with a name for the new particle: axion - not just similar to other particle names like proton, neutron, electron and photon, but also inspired by a laundry detergent of the same name. The axion was there to clean up a problem.

In fact, despite never being detected, it might clean up two. Several theories for elementary particles, including string theory, one of the leading candidate theories to unify all forces in nature, appeared to predict that axion-like particles could exist. If axions were indeed out there, could they also constitute part or even all of the missing dark matter? Perhaps, but an additional question that haunted all dark matter research was just as valid for axions: if so, then how can we see them? How does one make something 'dark' visible?

Shining a light on dark matter
Fortunately, it seems that for axions there may be a way out of this conundrum. If the theories that predict axions are correct, they are not only expected to be mass-produced in the universe, but some axions could also be converted into light in the presence of strong electromagnetic fields. Once there is light, we can see. Could this be the key to detect axions - and therefore to detect dark matter?

To answer that question, scientists first had to ask themselves where in the universe the strongest known electric and magnetic fields occur. The answer is: in regions surrounding rotating neutron stars also known as pulsars. These pulsars - short for 'pulsating stars' - are dense objects, with a mass roughly the same as that of our Sun, but a radius that is around 100,000 times smaller, only about 10 km. Being so small, pulsars spin with enormous frequencies, emitting bright narrow beams of radio emission along their axis of rotation. Similar to a lighthouse, the pulsar's beams can sweep across the Earth, making the pulsating star easily observable.

However, the pulsar's enormous spin does more. It turns the neutron star into an extremely strong electromagnet. That, in turn, could mean that pulsars are very efficient axion factories. Every single second an average pulsar would be capable of producing a 50-digit number of axions. Because of the strong electromagnetic field around the pulsar, a fraction of these axions could convert into observable light. That is: if axions exist at all - but the mechanism can now be used to answer just that question. Just look at pulsars, see if they emit extra light, and if they do, determine whether this extra light could be coming from axions.

Simulating a subtle glow
As always in science, actually performing such an observation is of course not that simple. The light emitted by axions - detectable in the form of radio waves - would only be a small fraction of the total light that these bright cosmic lighthouses send our way. One needs to know very precisely what a pulsar without axions would look like, and what a pulsar with axions would look like, to be able to see the difference - let alone to quantify that difference and turn it into a measurement of an amount of dark matter.

This is exactly what a team of physicists and astronomers have now done. In a collaborative effort between the Netherlands, Portugal and the USA, the team has constructed a comprehensive theoretical framework which allows for the detailed understanding of how axions are produced, how axions escape the gravitational pull of the neutron star, and how, during their escape, they convert into low energy radio radiation.

The theoretical results were then put on a computer to model the production of axions around pulsars, using state-of-the-art numerical plasma simulations that were originally developed to understand the physics behind how pulsars emit radio waves. Once virtually produced, the propagation of the axions through the electromagnetic fields of the neutron star was simulated. This allowed the researchers to quantitatively understand the subsequent production of radio waves and model how this process would provide an additional radio signal on top of the intrinsic emission generated from the pulsar itself.

Putting axion models to a test
The results from theory and simulation were then put to a first observational test. Using observations from 27 nearby pulsars, the researchers compared the observed radio waves to the models, to see if any measured excess could provide evidence for the existence of axions. Unfortunately, the answer was 'no' - or perhaps more optimistically: 'not yet'. Axions do not immediately jump out to us, but perhaps that was not to be expected. If dark matter were to give up its secrets that easily, it would already have been observed a long time ago.

The hope for a smoking-gun detection of axions, therefore, is now on future observations. Meanwhile, the current non-observation of radio signals from axions is an interesting result in itself. The first comparison between simulations and actual pulsars has placed the strongest limits to date on the interaction that axions can have with light.

Of course, the ultimate goal is to do more than just set limits - it is to either show that axions are out there, or to make sure that it is extremely unlikely that axions are a constituent of dark matter at all. The new results are just a first step in that direction; they are only the beginning of what could become an entirely new and highly cross-disciplinary field that has the potential to dramatically advance the search for axions.

Research Report:Novel Constraints on Axions Produced in Pulsar Polar-Cap Cascades

Related Links
University of Amsterdam
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Seeking Euclid's hidden stars: commissioning looks up
Paris (ESA) Sep 27, 2023
The Universe doesn't give up its secrets easily. There's a reason dark energy and dark matter have their names - although they (allegedly) make up 95% of the Universe, they do not emit, absorb or reflect light, so have not yet been seen. This is why we call Euclid our cosmic detective; its goal is no less than to understand the secret structure and make-up of our Universe. Euclid's engineers and scientists have now also donned their Sherlock Holmes hats, coats and pipes, as they work on three issues tha ... read more

STELLAR CHEMISTRY
US astronaut gets used to Earth after record-setting 371 days in space

HALO Space successfully completes second battery of test flights

Beyond the Frigid Void: Per Wimmer's Adventures in the Shadows of the Known

Russian ISS segment springs third leak in under a year

STELLAR CHEMISTRY
NASA prepares Artemis II rocket core stage for final assembly phase

Evolution Space to produce and test solid rocket motors at Stennis

Vega flies to bring satellites to space

France's Arianespace launches 12 satellites into space

STELLAR CHEMISTRY
Preparing To Drill: Sols 3975-3976

Fly across Mars's 'labyrinth of night' with Mars Express

Eclipse on Earth, Exploration on Mars

Bumping to a Better Position: Sols 3973-3974

STELLAR CHEMISTRY
Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

STELLAR CHEMISTRY
Sidus Space reports registered direct offering and concurrent private placement for $2M

Terran Orbital shareholders send open letter to Board

Stoke Space Announces $100 Million in New Investment

Relativity Space and Intelsat sign multi-launch agreement for Terran R

STELLAR CHEMISTRY
Terran Orbital opens new printed circuit board assembly facility

Five Things to Know about NASA's Deep Space Optical Communications

NASA's Roman mission gears up for a torrent of future data

Astroscale Japan to inspect a large defunct satellite in orbit

STELLAR CHEMISTRY
Researchers capture first-ever afterglow of huge planetary collision in outer space

Astronomers discover first step toward planet formation

Extreme habitats: Microbial life in Old Faithful Geyser

James Webb telescope captures planet-like structures in Orion Nebula

STELLAR CHEMISTRY
Plot thickens in hunt for ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

Plot thickens in the hunt for a ninth planet

Webb finds carbon source on surface of Jupiter's moon Europa

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.