. | . |
Protons are probably actually smaller than long thought by Staff Writers Bonn, Germany (SPX) Feb 07, 2022
A few years ago, a novel measurement technique showed that protons are probably smaller than had been assumed since the 1990s. The discrepancy surprised the scientific community; some researchers even believed that the Standard Model of particle physics would have to be changed. Physicists at the University of Bonn and the Technical University of Darmstadt have now developed a method that allows them to analyze the results of older and more recent experiments much more comprehensively than before. This also results in a smaller proton radius from the older data. So there is probably no difference between the values - no matter which measurement method they are based on. The study appeared in Physical Review Letters. Our office chair, the air we breathe, the stars in the night sky: they are all made of atoms, which in turn are composed of electrons, protons and neutrons. Electrons are negatively charged; according to current knowledge, they have no expansion, but are point-like. The positively charged protons are different - according to current measurements, their radius is 0.84 femtometers (a femtometer is a quadrillionth of a meter). Until a few years ago, however, they were thought to be 0.88 femtometers - a tiny difference that caused quite a stir among experts. Because it was not so easy to explain. Some experts even considered it to be an indication that the Standard Model of particle physics was wrong and needed to be modified. "However, our analyses indicate that this difference between the old and new measured values does not exist at all," explains Prof. Dr. Ulf Meissner from the Helmholtz Institute for Radiation and Nuclear Physics at the University of Bonn. "Instead, the older values were subject to a systematic error that has been significantly underestimated so far."
Playing billiards in the particle cosmos The higher the velocity of the electron beam, the more precise the measurements. However, this also increases the risk that the electron and proton will form new particles when they collide. "At high velocities or energies, this happens more and more often," explains Meissner, who is also a member of the Transdisciplinary Research Areas "Mathematics, Modeling and Simulation of Complex Systems" and "Building Blocks of Matter and Fundamental Interactions." "In turn, the elastic scattering events are becoming rarer. Therefore, for measurements of the proton size, one has so far only used accelerator data in which the electrons had a relatively low energy." In principle, however, collisions that produce other particles also provide important insights into the shape of the proton. The same is true for another phenomenon that occurs at high electron beam velocities - so-called electron-positron annihilation. "We have developed a theoretical basis with which such events can also be used to calculate the proton radius," says Prof. Dr. Hans-Werner Hammer of TU Darmstadt. "This allows us to take into account data that have so far been left out."
Five percent smaller than assumed 20 years So the proton actually appears to be about 5 percent smaller than was assumed in the 1990s and 2000s. At the same time, the researchers' method also allows new insights into the fine structure of protons and their uncharged siblings, neutrons. So it's helping us to understand a little better the structure of the world around us - the chair, the air, but also the stars in the night sky.
Research Report: "New insights into the nucleon's electromagnetic structure"
Collaborative research project on quantum technology starts on the International Space Station Mainz, Germany (SPX) Feb 04, 2022 In early December 2021, the project "Development of a laser system for experiments with Bose-Einstein condensates on the International Space Station within the BECCAL payload (BECCAL-II)" commenced, with the involvement of a team of researchers led by Professor Patrick Windpassinger and Dr. Andre Wenzlawski from Johannes Gutenberg University Mainz (JGU). In collaboration with Humboldt-Universitat zu Berlin, the Ferdinand-Braun-Institut (FBH) and Universitat Hamburg, the researchers will develop a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |