. | . |
Proton-hydrogen collision model could impact fusion research by Staff Writers Washington DC (SPX) Dec 10, 2019
The motions of plasmas may be notoriously difficult to model, but they can be better understood by analysing what happens when protons are scattered by atoms of hydrogen. In itself, this property is characterised by the size of a particular area surrounding the atom, known as its 'cross section'. In new research published in EPJ D, Anthony Leung and Tom Kirchner at York University in Canada used new techniques to calculate the cross sections of atoms which have been excited to higher energy levels. They analysed the behaviour over a wide range of impact energies. Since a huge amount of energy is released when ions and atomic nuclei combine, the duo's efforts are of particular importance to the field of nuclear fusion. Among those interested parties will be the International Thermonuclear Experimental Reactor (ITER) project, which relies upon accurate plasma modelling in its continuing developments of feasible fusion reactors. The collision process has been modelled through a wide variety of theoretical techniques in the past, but widespread discrepancies have remained between their results. In calculating the cross sections of hydrogen atoms in their first and second excited states, and for impact energies between 1 and 300keV, Leung and Kirchner's results validate some of these previous conclusions. At the same time, they reveal continuing discrepancies in other models. The researchers calculated their cross sections through a mathematical approach similar to those used in some previous studies, but which was more adaptable to intermediate-energy problems. Leung and Kirchner's work could bring about important advances in physicists' understanding of how plasmas behave, and may even advance our understanding of how they can be used to realise an abundant source of clean energy.
Fusion by strong lasers Dresden, Germany (SPX) Dec 09, 2019 Nuclear physics usually involves high energies, as illustrated by experiments to master controlled nuclear fusion. One of the problems is how to overcome the strong electrical repulsion between atomic nuclei which requires high energies to make them fuse. But fusion could be initiated at lower energies with electromagnetic fields that are generated, for example, by state-of-the-art free electron lasers emitting X-ray light. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) describe ho ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |