![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pohang, South Korea (SPX) Mar 31, 2022
Lego blocks, beloved by both children and adults, can be assembled into set models like space shuttles or cool buildings, but also can be used to build any new structures. Like these blocks, a new technology has been proposed to assemble atomic-sized blocks into new materials. A POSTECH research team led by Professor Cheol-Joo Kim and Ph.D. candidates Seong-Jun Yang and Ju-Hyun Jung (Department of Chemical Engineering) in collaboration with Dr. Chang Cuk Hwang and Dr. Eunsook Lee (Pohang Accelerator Laboratory) and Professor Pinshane Y. Huang and Ph.D. candidate Edmund Han (University of Illinois Urbana-Champagne) has developed a technology for assembling wafer-scale films at the atomic level. Recently published as the front cover paper of Nano Letters, the findings are a result of precisely designing the structure of materials at the atomic level. Crystal films composed of atoms offer varying physical properties based on the modulation of their thickness or atomic structures. Varying the stacking configuration of these thin films - layer-by-layer or twisted - produces different physical properties. However, studies conducted so far have only enabled assembly of atomically thin crystals at a very small-scale because assembling large wafer-sized thin films easily contaminates their interfaces, hindering the emergence of new properties. To overcome this, the researchers proposed a programmed crystal assembly of graphene and monolayer hexagonal boron nitride (hBN), assisted by van der Waals interactions. This new technique produces wafer-scale films of nearly 100% pristine interfaces. Applying this new method enables large-scale production of wafer-size artificial crystalline films which have been difficult to use as actual devices due to their small size. This technology shows promise to help develop new materials that emit light or conduct electricity since it can program the structure of a material at the atomic level. "The atomic-level assembly method has been limited to very small sizes, limiting the discovery of properties and technology development to mere verification at the single-device level," remarked Professor Cheol-Joo Kim who led the study. He added, "The findings from this study have demonstrated the atomic-level precision assembly of single-crystalline materials at the wafer-scale for the first time, which will be applicable to the development of nanodevices in the future." This study was conducted with the support from the Young Researcher Program and the Creative Materials Discovery Program of the National Research Foundation of Korea.
Research Report: "Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals"
![]() ![]() How a physicist aims to reduce the noise in quantum computing Flagstaff AZ (SPX) Mar 31, 2022 Ever wondered why your credit score is what it is? Have you stored private information in the cloud that you want to remain that way? Thought about investing in cryptocurrency? Worried about cyber warfare? If you answered yes to any of these questions, quantum computing plays a role in your life-or at least, it will when its usage becomes practical enough to run the systems that run our daily lives. That's where Ryan Behunin's work comes in. Behunin, an assistant professor of applied p ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |