. 24/7 Space News .
STELLAR CHEMISTRY
Probing the magnetar at the center of our galaxy
by Staff Writers
Pasadena CA (SPX) Jan 10, 2019

Illustration of a magnetar-a rotating neutron star with incredibly powerful magnetic fields.

In a new Caltech-led study, researchers from campus and the Jet Propulsion Laboratory (JPL) have analyzed pulses of radio waves coming from a magnetar - a rotating, dense, dead star with a strong magnetic field - that is located near the supermassive black hole at the heart of the Milky Way galaxy.

The new research provides clues that magnetars like this one, lying in close proximity to a black hole, could perhaps be linked to the source of "fast radio bursts," or FRBs. FRBs are high-energy blasts that originate beyond our galaxy but whose exact nature is unknown.

"Our observations show that a radio magnetar can emit pulses with many of the same characteristics as those seen in some FRBs," says Caltech graduate student Aaron Pearlman, who presented the results at the 233rd meeting of the American Astronomical Society in Seattle.

"Other astronomers have also proposed that magnetars near black holes could be behind FRBs, but more research is needed to confirm these suspicions."

The research team was led by Walid Majid, a visiting associate at Caltech and principal research scientist at JPL, which is managed by Caltech for NASA, and Tom Prince, the Ira S. Bowen Professor of Physics at Caltech.

The team looked at the magnetar named PSR J1745-2900, located in the Milky Way's galactic center, using the largest of NASA's Deep Space Network radio dishes in Australia. PSR J1745-2900 was initially spotted by NASA's Swift X-ray telescope, and later determined to be a magnetar by NASA's Nuclear Spectroscopic Telescope Array (NuSTAR), in 2013.

"PSR J1745-2900 is an amazing object. It's a fascinating magnetar, but it also has been used as a probe of the conditions near the Milky Way's supermassive black hole," says Fiona Harrison, the Benjamin M. Rosen Professor of Physics at Caltech and the principal investigator of NuSTAR. "It's interesting that there could be a connection between PSR J1745-2900 and the enigmatic FRBs."

Magnetars are a rare subtype of a group of objects called pulsars; pulsars, in turn, belong to a class of rotating dead stars known as neutron stars. Magnetars are thought to be young pulsars that spin more slowly than ordinary pulsars and have much stronger magnetic fields, which suggests that perhaps all pulsars go through a magnetar-like phase in their lifetime.

The magnetar PSR J1745-2900 is the closest-known pulsar to the supermassive black hole at the center of the galaxy, separated by a distance of only 0.3 light-year, and it is the only pulsar known to be gravitationally bound to the black hole and the environment around it.

In addition to discovering similarities between the galactic-center magnetar and FRBs, the researchers also gleaned new details about the magnetar's radio pulses. Using one of the Deep Space Network's largest radio antennas, the scientists were able to analyze individual pulses emitted by the star every time it rotated, a feat that is very rare in radio studies of pulsars.

They found that some pulses were stretched, or broadened, by a larger amount than predicted when compared to previous measurements of the magnetar's average pulse behavior. Moreover, this behavior varied from pulse to pulse.

"We are seeing these changes in the individual components of each pulse on a very fast time scale. This behavior is very unusual for a magnetar," says Pearlman. The radio components, he notes, are separated by only 30 milliseconds on average.

One theory to explain the signal variability involves clumps of plasma moving at high speeds near the magnetar. Other scientists have proposed that such clumps might exist but, in the new study, the researchers propose that the movement of these clumps may be a possible cause of the observed signal variability. Another theory proposes that the variability is intrinsic to the magnetar itself.

"Understanding this signal variability will help in future studies of both magnetars and pulsars at the center of our galaxy," says Pearlman.

Pearlman and his colleagues hope to use the Deep Space Network radio dish to solve another outstanding pulsar mystery: Why are there so few pulsars near the galactic center? Their goal is to find a non-magnetar pulsar near the galactic-center black hole.

"Finding a stable pulsar in a close, gravitationally bound orbit with the supermassive black hole at the galactic center could prove to be the Holy Grail for testing theories of gravity," says Pearlman. "If we find one, we can do all sorts of new, unprecedented tests of Albert Einstein's general theory of relativity."

Research Report: "Pulse Morphology of the Galactic Center Magnetar PSR J1745-2900," Aaron B. Pearlman et al., 2018 Oct. 20, Astrophysical Journal


Related Links
California Institute Of Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
When not seeing is believing as Oumuamua mystery continues
Groningen. Netherlands (SPX) Nov 19, 2018
A year ago, astronomers identified the first interstellar visitor to our solar system. 'Oumuamua was studied by nearly every telescope available, including the ultra-sensitive Spitzer infrared space telescope. Despite a whopping 33 hours of observation time, 'Oumuamua proved too faint for Spitzer to see. Nevertheless, this allowed the observation team to draw significant conclusions. Their analysis of the visitor was published online on 14 November by The Astronomical Journal. 'If other interstell ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
London retains tech start-up crown: study

Shutdown keeps US experts away from scientific conferences

45 OG Det 3 prepares for human spaceflight return

US gadget love forecast to grow despite trust issues

STELLAR CHEMISTRY
Small-satellite launch service revenues to pass $69B by 2030

The high cost of space missions

Difficulties in Planned Soyuz Launches Preparation to Emerge in 2020 - Source

ISRO planning to 32 space missions in 2019

STELLAR CHEMISTRY
UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

Over Six Months Without Word From Opportunity

STELLAR CHEMISTRY
In space, the US sees a rival in China

China launches telecommunication technology test satellite

China's Chang'e-4 makes historic landing on moon's far side

China launches first Hongyun project satellite

STELLAR CHEMISTRY
The Satellite Applications Catapult partners with Infostellar to provide improved ground station access

Why I'm excited about Amazon entering the SatCom industry

Year of many new beginnings for Indian space sector

ESA astronaut Alexander Gerst returns to Earth for the second time

STELLAR CHEMISTRY
Raytheon contracts Elbit Systems for Two Color Laser System

Holographic color printing for optical security

A high-performance material at extremely low temperatures

Chemical catalysts turn tiny 2D sheets into 3D objects

STELLAR CHEMISTRY
TESS discovers its third new planet, with longest orbit yet

Astronomers find warped protoplanetary disk around distant star

Citizen scientists find unusual exoplanet among Kepler data

Young planets orbiting red dwarfs may lack ingredients for life

STELLAR CHEMISTRY
New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'

NASA succeeds in historic flyby of faraway world









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.