Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Probing methane's secrets: From diamonds to Neptune
by Staff Writers
Washington DC (SPX) Sep 15, 2013


New research from Carnegie on methane under pressure will help scientists understand the chemistry of planetary interiors, including Neptune and and Uranus, as well as hydrocarbon energy resources and diamond formation here on Earth. Credit: Courtesy of Alexander Goncharov, Carnegie Institution for Science.

Hydrocarbons from the Earth make up the oil and gas that heat our homes and fuel our cars. The study of the various phases of molecules formed from carbon and hydrogen under high pressures and temperatures, like those found in the Earth's interior, helps scientists understand the chemical processes occurring deep within planets, including Earth.

New research from a team led by Carnegie's Alexander Goncharov hones in on the hydrocarbon methane (CH4), which is one of the most abundant molecules in the universe. Despite its ubiquity, methane's behavior under the conditions found in planetary interiors is poorly understood due to contradictory information from various modeling studies. The work is published by Nature Communications.

Lead author Sergey Lobanov explains: "Our knowledge of physics and chemistry of volatiles inside planets is based mainly on observations of the fluxes at their surfaces. High-pressure, high-temperature experiments, which simulate conditions deep inside planets and provide detailed information about the physical state, chemical reactivity, and properties of the planetary materials, remain a big challenge for us."

For example, methane's melting behavior is known only below 70,000 times normal atmospheric pressure (7 GPa). The ability to observe it under much more extreme conditions is fundamental information for planetary models.

Moreover, its reactivity under extreme conditions also needs to be understood. Previous studies indicated little information about methane's chemical reactivity under pressure and temperature conditions similar to those found in the deep Earth. This led to the assumption that methane is the main hydrocarbon phase of carbon, oxygen, and hydrogen-containing fluid in some parts of the Earth's mantle. But the team's work shows that it is necessary to question this assumption.

Using high-pressure experimental techniques, the team--including Carnegie's Lobanov, Xiao-Jia Chen, Chang-Sheng Zha, and Ho-Kwang "Dave" Mao--was able to examine methane's phases and reactivity under a range of temperatures and pressures mimicking environments found beneath Earth's surface.

At pressures reaching 790,000 times normal atmospheric pressure (80 GPa), methane's melting temperature is still below 1,900 degrees Fahrenheit. This suggests that methane is not a solid under any conditions met deep within most planets. What's more, its melting point is even lower than melting temperatures of water (H2O) and ammonia (NH3), other very important components in the interiors of giant planets.

As the temperature increases above about 1,700 degrees Fahrenheit, methane becomes more chemically reactive. First, it partly disassociates into elemental carbon and hydrogen. Then, with further temperature increases, light hydrocarbon molecules start to form.

Pressure also affects the composition of the carbon-hydrogen system, with heavy hydrocarbons becoming apparent at pressures above 250,000 times atmospheric pressure (25 GPa), indicating that under deep mantle conditions the environment is likely methane poor.

These findings have implications both for Earth's deep chemistry and for the geochemistry of icy gas giant planets such as Uranus and Neptune. The team argues that this reactivity may play a role in the formation of ultradeep diamonds deep within the mantle.

They assert that their findings should be taken into account in future models of the interiors of Neptune and Uranus, which are believed to have mantles consisting of a mixture of methane, water, and ammonia components.

The study was supported by Deep Carbon Observatory, NAI, ARO, Russian Foundation for Basic Research, and Ministry of Education and Science of RF.

.


Related Links
Carnegie Institution
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
China confirms new gas pipeline through Tajikistan
Dushanbe, Tajikistan (AFP) Sept 14, 2013
China's Xi Jinping at a regional summit signed a deal to build a gas pipeline through the impoverished ex-Soviet country of Tajikistan, Tajik television reported Saturday. The pipeline will transport gas from energy-rich Turkmenistan to China in as part of a huge supply deal. "Carrying out this project will allow us to attract more than $3 billion of direct investments from Chin into the ... read more


ENERGY TECH
Sixteen Tons of Moondust

Scientists say water on moon may have originated on Earth

Moon landing mission to use "secret weapons"

NASA launches spacecraft to study Moon atmosphere

ENERGY TECH
Explosive flooding said responsible for distinctive Mars terrain

Upgrade to Mars rovers could aid discovery on more distant worlds

Investigating 'Coal Island' Rock Outcrop

Terramechanics research aims to keep Mars rovers rolling

ENERGY TECH
NASA Spacecraft Embarks on Historic Journey Into Interstellar Space

Elite Group of Young Scientists Embark on DARPA Research Efforts

From Elvis to E.T.? The Voyagers' extraordinary tale

Astronauts prepare for deep space -- by going deep underground

ENERGY TECH
China civilian technology satellites put into use

China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

ENERGY TECH
ISS Releases a White Stork and Awaits a Swan

Three astronauts back on Earth from ISS: mission control

ISS Crew Completes Spacewalk Preps

Russian cosmonaut set for space station mission resigns

ENERGY TECH
Arianespace remains the global launch services leader

Russian space official denies report of problem in Soyuz return

Lockheed Martin Atlas V To Launch Morelos-3 ComSat

Japan sets new date for satellite rocket launch

ENERGY TECH
ESA selects SSTL to design Exoplanet satellite mission

Coldest Brown Dwarfs Blur Lines between Stars and Planets

NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

ENERGY TECH
Butterfly wings inspire new technologies: from fabrics and cosmetics to sensors

Calculating the carbon footprint of California's products

First laser-like X-ray light from a solid

Space's 'Ferrari' set to fall to Earth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement