. 24/7 Space News .
TIME AND SPACE
Prime numbers, crystals share similar structural patterns
by Brooks Hays
Washington (UPI) Sep 6, 2018

According to a new study, the distribution of prime numbers is similar to the positioning of atoms inside some crystalline materials.

When scientists at Princeton University compared the pattern of prime numbers along a lengthy line of numbers with the atomic patterns revealed when crystals are blasted with X-rays, they were surprised by the similarities.

"There is much more order in prime numbers than ever previously discovered," Salvatore Torquato, professor of chemistry and the Princeton Institute for the Science and Technology of Materials, said in a news release. "We showed that the primes behave almost like a crystal or, more precisely, similar to a crystal-like material called a 'quasicrystal.'"

Until recently, mathematicians thought prime numbers, numbers divisible only by themselves and one, were scattered sporadically throughout the number line. But new research suggests there are patterns to be found when primes are analyzed at greater scales.

Research suggests prime number patterns resemble "hyperuniformity" patterns found in crystals, quasicrystals and other disordered systems. Hyperuniformity describes patterns that reveal themselves at large scales.

One way to identify hyperuniformity in crystals is to blast them with X-rays, a process known as crystallography. When an X-ray travels through a crystal's 3D atomic lattice, the light produces a pattern of bright spots called Bragg peaks.

When X-rays pass through quasicrystals, the resulting pattern of Brag peaks is more complex. In between the main Bragg peaks are additional Bragg peaks -- patterns within patterns.

When scientists designed a model to convert the pattern of prime numbers into a crystalline atomic structure -- into particles -- they found the theoretical quasicrystal produced Bragg-like peaks similar to the hyperuniformity patterns revealed by real quasicrystals.

The comparison only works if a sufficiently large portion of the number line is translated. Over shorter intervals, the pattern of prime numbers appears random and disordered.

"When you go to that distinguished limit, 'Boom!'" Torquato said. "The ordered structure pops out."

Researchers hope the findings -- detailed this week in the Journal of Statistical Mechanics -- will offer new insights into both mathematics and material science.

"Prime numbers have beautiful structural properties," said Torquato. "The primes teach us about a completely new state of matter."


Related Links
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
What actually is nothing
Cambridge UK (The Conversation) Aug 30, 2018
Philosophers have debated the nature of "nothing" for thousands of years, but what has modern science got to say about it? In an interview with The Conversation, Martin Rees, Astronomer Royal and Emeritus Professor of Cosmology and Astrophysics at the University of Cambridge, explains that when physicists talk about nothing, they mean empty space (vacuum). This may sound straightforward, but experiments show that empty space isn't really empty - there's a mysterious energy latent in it which can t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Going up! Japan to test mini 'space elevator'

Airbus-built ACLS Life Support Rack is ready for launch from Tanegashima

UAE announces first astronauts to go to space

Bahrain in talks with Russia to send astronauts into space

TIME AND SPACE
Alaska Aerospace To Host Open House And Town Hall Meeting In Kodiak

Roscosmos Head Offers to Continue Rocket Engines Supply to US Despite Sanctions

Aerojet Rocketdyne demonstrates advanced electric propulsion capabilities

How an LWO and his team guided a Minotaur IV rocket out of the labyrinth

TIME AND SPACE
Curiosity Surveys a Mystery Under Dusty Skies

Mars dust storm clears, raising hope for stalled NASA rover

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

TIME AND SPACE
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

TIME AND SPACE
Making space exploration real on Earth

European Space Talks: sharing our passion for space

The world's lowest-cost global communications network

Successful capital raising sees Kleos Space Launch on the ASX

TIME AND SPACE
A new way to remove ice buildup without power or chemicals

Researchers use acoustic forces to print droplets that couldn't be printed before

Facebook to build $1 bn Singapore data centre, first in Asia

All that is gold is not biochemically stable

TIME AND SPACE
A Direct-Imaging Mission to Study Earth-like Exoplanets

Youngest Accretion Disk Detected in Star Formation

Rutgers scientists identify protein that may have existed when life began

Little star sheds light on young planets

TIME AND SPACE
Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter

Water discovered in the Great Red Spot indicates Jupiter might have plenty more









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.