Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Power without the cord
by Staff Writers
Hermsdorf, Germany (SPX) Apr 16, 2012


File image.

Cell phones and flashlights operate by battery without trouble. Yet because of the limited lifespan, battery power is not a feasible option for many applications in the fi elds of medicine or test engineering, such as implants or probes. Researchers have now developed a process that supplies these systems with power and without the power cord.

For more than 50 years, pacemakers have set the rhythm for many hearts. The engineering of microelectronic implants has since advanced by leaps and bounds: they have become ever-smaller and more technologically sophisticated. The trend is moving toward miniaturized, intelligent systems that will take over therapeutic and diagnostic functions.

For example, in the future implantable sensors will measure glucose levels, blood pressure or the oxygen saturation of tumorous tissue, transmitting patient data via telemetry. Meanwhile, medication dosing systems and infusion pumps will be able to deliver a targeted release of pharmaceutical substances in the body, alleviating side effects in the process.

Technology that can be worn on a belt
All these solutions are composed of probes, actuators, signal processing units and electronic controls - and therein lies the problem, too: they must have a power supply. Batteries are usually ruled out because of their limited durability - after all, implants stay inside the body for years.

Currently, radio wave-based (HF) and inductive systems are most commonly in use. However, these exhibit differences in efficiency based on location, position and movement and are also often limited in range. Soon, a new power transfer system should circumvent the limitations of previous methods.

Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Hermsdorf succeeded in wirelessly transmitting power from a portable transmitter module to a mobile generator module - the receiver.

"The cylindrical shaped transfer module is so small and compact that it can be attached to a belt," says Dr. Holger Lausch, scientist at IKTS. The transmitter provides an electric current of over 100 milliwatts and has a range of about 50 centimeters. As a result, the receiver can be placed almost anywhere in the body.

"With our portable device, we can remotely supply power to implants, medication dosing systems and other medical applications without touching them - such as ingestible endoscopic capsules that migrate through the gastrointestinal tract and transmit images of the body's inside to the outside," says Lausch.

The generator module can be traced any time - regardless of power transfer - with respect to its position and location. So if the generator is located inside a video endoscopy capsule, the images produced can be assigned to specific intestinal regions. If it is placed inside a dosing capsule, then the active ingredient in the medication can be released in a targeted manner.

Energy can pass through all non-magnetic materials
How does this new, already patented system work? In the transfer module, a rotating magnet driven by an EC motor generates a magnetic rotary field. A magnetic pellet in the receiver connects to the alternating exterior magnetic field and as a result, is set in rotation itself. The rotational movement is transformed into electricity, thus the power is produced right in the generator module.

"With magnetic coupling, power can be transported through all non-magnetic materials, such as biological tissue, bones, organs, water, plastic or even a variety of metals. Moreover, the magnetic field produced has no harmful side effects on humans. It doesn't even heat up tissue," says Lausch, highlighting the advantages of the system.

Because the modules available as prototypes are scalable in terms of range, size and performance capacity, they can be used for more than medical technology applications. They can also supply power wirelessly to hermetically sealed sensors - such as those inside walls or bridges.

This makes them suitable for use in mechanical engineering and plant construction and in the construction industry. Other conceivable applications include the charging of power storage units and activation of electronic components.

Using a hip implant as a demonstration tool, Lausch and his team will demonstrate how their wireless power transmission system functions at the Hannover Messe from April 23-27 (Hall 13, Booth C10). As used here, the technology electrically stimulates the ball-and-socket joint to stimulate the growth of cartilage and bone cells.

Research News - April 2012 [ PDF 0.47MB ]

.


Related Links
Fraunhofer
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Sulfur in every pore
Munich, Germany (SPX) Apr 11, 2012
From smartphones to e-bikes, the number of mobile electronic devices is steadily growing around the world. As a result, there is an increased need for batteries that are small and light, yet powerful. As the potential for the further improvement of lithium-ion batteries is nearly exhausted, experts are now turning to a new and promising power storage device: lithium-sulfur batteries. In an ... read more


ENERGY TECH
Russia postpones Luna-Glob moon mission

Russia Plans to Launch Lunar Rovers to Moon after 2020

Russia to explore moon

Earth's Other Moons

ENERGY TECH
Russia to Go Back to the Moon Before Reaching for Mars

NASA Planning Group Takes Key Steps For Future Mars Exploration

NASA seeks new ideas for Mars missions

Mars Express - Pit chains on the Tharsis volcanic bulge

ENERGY TECH
NASA's Human Spaceflight Programs: From Space Shuttle To The Future

Commentary: Innovate or evaporate

United Launch Alliance Announces New Human Launch Services Organization

Private Lunar mission and the future of space tourism

ENERGY TECH
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

ENERGY TECH
Commercial Platform Offers Exposure at ISS

Learn to dock ATV the astronaut way

Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

Busy first days for ATV Edoardo Amaldi

ENERGY TECH
'Good chance' for SpaceX April 30 launch to ISS: NASA

Dragon Expected to Set Historic Course

NASA Awards Launch Contract For Goes-R And Goes-S Missions

Spy satellite-carrying rocket blasts off

ENERGY TECH
ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

Study On Extrasolar Planet Orbits Suggests That Solar System Structure Is The Norm

ENERGY TECH
SciTechTalk: Rude awakening for Mac owners

Controlling the cut - Nottingham engineers top the leader board

Moody's downgrades Nokia's rating, keeps negative outlook

Twitter alive with talk of dead rapper hologram




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement