Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Power-generating knee strap hints at end for batteries
by Staff Writers
Washington DC (SPX) Jun 20, 2012


File image.

Battery-powered devices could soon be a thing of the past thanks to a group of UK researchers who have created a novel energy harvester to power some of the latest wearable gadgets.

By strapping the energy harvester to the knee joint, a user could power body-monitoring devices such as heart rate monitors, pedometers and accelerometers by simply walking and not have the worry of running out of power and replacing batteries. Soldiers may find this device particularly useful as they often have to carry up to 10kg of power equipment when on foot patrol.

The device has been presented in IOP Publishing's journal Smart Materials and Structures by researchers from Cranfield University, The University of Liverpool and University of Salford.

The energy harvesting device, which is designed to fit onto the outside of the knee, is circular and consists of an outer ring and central hub. The outer ring rotates as the knee joint goes through a walking motion. The outer ring is fitted with 72 plectra which "pluck" four energy-generating arms attached to the inner hub.

As an individual plectrum deflects off one of the arms - which are called bimorphs - it causes it to vibrate, much like a guitar string, and generates the electrical energy.

"A bimorph is a type of piezoelectric device capable of converting mechanical energy, such as the vibrating caused by the plectra, into electrical energy, and vice versa. Piezoelectric materials have long been used as sensors in SONAR and ultrasound scanners and have recently been the focus of attention in the field of energy harvesting," said lead author of the study Dr Michele Pozzi.

At the moment the device can harvest around two milliwatts of power but the researchers believe that with a few realistic improvements it could exceed 30 milliwatts of power, which could allow new generation GPS tracking, more advanced signal processing and more frequent and longer wireless transmission.

In this study, the energy harvester was tested on a knee motion simulator which reproduced the gait pattern of a human. The researchers were able to accurately control the simulator by examining the intricate detail in the movements of the knee joint by placing a selection of reflective markers on a human subject and using motion capture systems to monitor their walking pattern.

The subject was also fitted with three backpack loads to observe how the knee joint would move under a heavier load.

The knee itself is an ideal starting point for energy generation as it has a large change in angle during walking and does so at significant speeds. A device attached to the joint could therefore generate large amounts of power.

"There is an on-going project looking at manufacturing a more compact and truly wearable harvester. At the moment we are using precise but cost-effective manufacturing techniques for the plectra and casing and anticipate that remaining parts will be moulded industrially, slashing the cost. I'd put a cost tag of less than Pounds 10 for each harvester on a large scale production," continued Dr Pozzi.

This study was initially funded by the EPSRC and DSTL as part of a joint project to reduce the heavy battery burden on dismounted soldiers. Published version of the paper "The pizzicato knee-joint energy harvester: characterisation with biomechanical data and effect of backpack load" Pozzi M et al 2012 Smart Mater. Struct.

.


Related Links
Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Ancient effect harnessed to produce electricity from waste heat
Washington DC (SPX) Jun 14, 2012
A phenomenon first observed by an ancient Greek philosopher 2,300 years ago has become the basis for a new device designed to harvest the enormous amounts of energy wasted as heat each year to produce electricity. The first-of-its-kind "pyroelectric nanogenerator" is the topic of a report in ACS' journal Nano Letters. Zhong Lin Wang and colleagues at Georgia Tech explain that more than 50 ... read more


ENERGY TECH
Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

UA Lunar-Mining Team Wins National Contest

NASA Lunar Spacecraft Complete Prime Mission Ahead of Schedule

NASA Offers Guidelines To Protect Historic Sites On The Moon

ENERGY TECH
ESA tests self-steering rover in 'Mars' desert

Opportunity Faces Slow Going Due To Communication Issues

Test of Spare Wheel Puts Odyssey on Path to Recovery

Impact atlas catalogs over 635,000 Martian craters

ENERGY TECH
West must cut appetite for cars and TVs, says UN official

Flying to space is also women's work: Russian cosmonaut

Data From Voyager 1 Points To Interstellar Future

The pressure is on for aquanauts

ENERGY TECH
Rocket Scientist Who 'Spied for China' Freed

Backup Plans for Tiangong

Liu Yang: China's first female astronaut

Contingency plans to address 700 space scenarios

ENERGY TECH
Did You Say 1.2 Billion Particles Per Month?

Varied Views from the ISS

Strange Geometry - Yes, It's All About the Math

Capillarity in Space - Then and Now, 1962-2012

ENERGY TECH
A milestone in launcher preparations for Arianespace's fourth Ariane 5 flight of 2012

US military launches new satellite into space

NASA Administrator Bolden Views Historic SpaceX Dragon Capsule

NASA's NuSTAR Mission Lifts Off

ENERGY TECH
Extremely little telescope discovers pair of odd planets

Alien Earths Could Form Earlier than Expected

Planets can form around different types of stars

Small Planets Don't Need 'Heavy Metal' Stars to Form

ENERGY TECH
Malaysia rare earths plant gets go-ahead

All the colors of a high-energy rainbow, in a tightly focused beam

GTRI researchers develop prototype automated pavement crack detection and sealing system

Ionic liquid improves speed and efficiency of hydrogen-producing catalyst




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement