. | . |
Porous materials make it possible to have nanotechnology under control by Staff Writers Andalusia, Spain (SPX) May 21, 2018
Half metal, half organic structure, like Robocop himself, is the material known as MOF, short for Metal Organic Framework. MOF has been developed by scientists and applied to a myriad of products from sorbents to batteries for electronic devices. This material emerged from the nanotechnology revolution that turned material design upside down and facilitated the improvement of chemical processes. MOFs are a new organic and inorganic hybrid material made up of metallic nodes and organic links characterized by their porosity, that is to say, by the intermolecular spaces that it is comprised of. The study and understanding of its properties and applicability have centered on recent work by Professor Rafael Luque, of the University of Cordoba Organic Chemistry Department research group FQM-383, and a Southern China Technology University research group, published in Dalton Transactions. The research has proven that in addition to the ability to be used in catalysis processes - by means of which the speed of a chemical reaction is increased - these materials are built as stabilizers of metallic nanostructures. So, it paves the way for working with these kinds of nanoentities, thanks to the control over their stability. The range of possibilities detailed in Luque's work depend on the encapsulated metal/metallic structure, which could be used for CO2 absorption or steam absorption when working with fuel cells and other kinds of batteries. The methodology designed by Rafael Luque and his team is considered innovative because it enables control over material design to degrees that were unthinkable before. Previously, these porous materials that can accommodate nanoparticles have been studied, but never before has anyone specified the exact way to thoroughly control all the parameters and make them so pliable. Diversifying the use of these metal-organic materials as much as possible to take advantage of the stability and pliability that they give to nanostructures will be the main focus for this research group henceforth. This line of research will be described in developing studies that are currently being performed by University of Cordoba research group FQM-383.
A new Bose-Einstein condensate created at Aalto University Helsinki, Finland (SPX) Apr 22, 2018 Nearly a hundred years ago, Albert Einstein and Satyendra Nath Bose predicted that quantum mechanics can force a large number of particles to behave in concert as if they were only a single particle. The phenomenon is called Bose-Einstein condensation, and it took until 1995 to create the first such condensate of a gas of alkali atoms. Although Bose-Einstein condensation has been observed in several systems, the limits of the phenomenon need to be pushed further: to faster timescales, higher tempe ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |