![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Innsbruck, Austria (SPX) Mar 15, 2022
In Gerhard Kirchmair's laboratory at the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences in Innsbruck, Austria, superconducting quantum bits are coupled to waveguides. When several of these quantum bits are incorporated into the waveguide, they interact with each other, resulting in so-called dark states. "These are entangled quantum states that are completely decoupled from the outside world," explains Max Zanner, first author of the paper. "They are invisible, so to speak, which is why they are called dark states." These states are of interest for quantum simulations or the processing of quantum information - corresponding proposals have been made several times in recent years. To date, however, it has not been possible to control and manipulate these dark states appropriately without breaking their invisibility. Now, the team led by Gerhard Kirchmair has developed a system with which the dark states of superconducting circuits in a microwave waveguide can be manipulated from the outside.
Expandable as desired "With a trick, we have now succeeded in finding access to these dark states." His team built four superconducting quantum bits into a microwave waveguide and attached control lines via two lateral inlets. Using microwave radiation via these wires, the dark states can be manipulated. Together, the four superconducting circuits form a robust quantum bit with a storage time about 500 times longer than that of the individual circuits. Multiple dark states exist simultaneously in this quantum bit, which can be used for quantum simulation and quantum information processing. "In principle, this system can be extended arbitrarily," says Matti Silveri from the Nano and Molecular Systems Research Unit at the University of Oulu, Finland. The successful experiment forms the starting point for further investigations of dark states and their possible applications. For the time being, these are mainly in the field of fundamental research, where there are still many open questions regarding the properties of such quantum systems. The concept developed by the Innsbruck physicists to control dark states can in principle be implemented not only with superconducting quantum bits, but also on other technological platforms. "However, the circuits we use, which function like artificial atoms, have advantages over real atoms, which are much more difficult to couple strongly to a waveguide," Gerhard Kirchmair emphasizes.
Research Report: "Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics"
![]() ![]() Quantum information: Light from rare-earth molecules Karlsruhe, Germany (SPX) Mar 13, 2022 Quantum information will revolutionize not only research and industry, but also our everyday life. Among others, it promises enormous progress in the simulation of materials and processes, which will push the development of new medical substances, the improvement of batteries, transport planning, and secure information and communication. A quantum bit (qubit) can assume many different states between 0 and 1 at the same time. This so-called quantum superposition enables massively parallel processing of d ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |