. | . |
Physicists observe quantum entanglement of 15 trillion atoms by Brooks Hays Washington DC (UPI) May 15, 2020 Scientists have observed an unexpectedly large quantum system featuring 15 trillion entangled atoms, according to a new study. Quantum entanglement describes the connection between separate particles. The phenomenon is key to the promise of quantum computing, quantum encryption and other quantum technologies. Usually, quantum entanglement features a pair of coupled atoms or electrons. Entangled states are quite delicate. To ensure entangled particles remain undisturbed, many quantum systems must be isolated and kept at temperatures approaching absolute zero, limiting their practical viability. For the new study, published Friday in Nature Communications, researchers heated a cloud of gas atoms to temperatures upwards of 450 Kelvin. The atoms were far from isolated. Every few microseconds, billions of gas atoms would collide, causing their electrons to spin sporadically in different directions. Physicists used a laser to measure the magnetization of the hot and chaotic cloud of gas atoms. By measuring magnetization, caused by electron spin patterns, scientists were able to detect coupling between the gas atoms. Scientists were surprised to detect entanglement of some 15 trillion atoms -- a total 100 times greater than the previous entanglement record. "If we stop the measurement, the entanglement remains for about one millisecond, which means that 1,000 times per second a new batch of 15 trillion atoms is being entangled," first study author Jia Kong, researcher at the Institute of Photonic Sciences in Spain, said in a news release. "And you must think that one millisecond is a very long time for the atoms, long enough for about fifty random collisions to occur," Kong said. "This clearly shows that the entanglement is not destroyed by these random events. This is maybe the most surprising result of the work." The ability to detect quantum entanglement on large scales could help scientists improve ultra-sensitive magnetic field detection technologies. Researchers already use sensors featuring hot, high-density atomic gases in the field of magnetoencephalography, the study of the brain's magnetic signals. The addition of entanglement could help scientists study the magnetic signals of the brain at higher resolutions. "This result is surprising, a real departure from what everyone expects of entanglement," said co-author Morgan Mitchell, professor at IFCO. "We hope that this kind of giant entangled state will lead to better sensor performance in applications ranging from brain imaging to self-driving cars to searches for dark matter."
The Space Station's coolest experiment gets astronaut-assisted upgrade Pasadena CA (JPL) May 13, 2020 NASA's Cold Atom Laboratory, a facility for fundamental physics experiments on the International Space Station, recently underwent a major hardware upgrade with the help of astronauts Christina Koch and Jessica Meir. By chilling atom clouds to just above absolute zero - the lowest temperature matter can reach - Cold Atom Lab enables scientists to directly observe unique atomic behaviors, helping answer questions about how our world works at the smallest scales. The new hardware will dramatically expand ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |