24/7 Space News
CHIP TECH
Physicists measure quantum geometry for the first time
illustration only
Physicists measure quantum geometry for the first time
by Elizabeth A. Thomson | Materials Research Laboratory
Boston MA (SPX) Jan 14, 2025

MIT physicists and colleagues have for the first time measured the geometry, or shape, of electrons in solids at the quantum level. Scientists have long known how to measure the energies and velocities of electrons in crystalline materials, but until now, those systems' quantum geometry could only be inferred theoretically, or sometimes not at all.

The work, reported in the Nov. 25 issue of Nature Physics, "opens new avenues for understanding and manipulating the quantum properties of materials," says Riccardo Comin, MIT's Class of 1947 Career Development Associate Professor of Physics and leader of the work.

"We've essentially developed a blueprint for obtaining some completely new information that couldn't be obtained before," says Comin, who is also affiliated with MIT's Materials Research Laboratory and the Research Laboratory of Electronics.

The work could be applied to "any kind of quantum material, not just the one we worked with," says Mingu Kang PhD '23, first author of the Nature Physics paper who conducted the work as an MIT graduate student and who is now a Kavli Postdoctoral Fellow at Cornell University's Laboratory of Atomic and Solid State Physics.

Kang was also invited to write an accompanying research briefing on the work, including its implications, for the Nov. 25 issue of Nature Physics.

A weird world

In the weird world of quantum physics, an electron can be described as both a point in space and a wave-like shape. At the heart of the current work is a fundamental object known as a wave function that describes the latter. "You can think of it like a surface in a three-dimensional space," says Comin.

There are different types of wave functions, ranging from the simple to the complex. Think of a ball. That is analogous to a simple, or trivial, wave function. Now picture a Mobius strip, the kind of structure explored by M.C. Escher in his art. That's analogous to a complex, or nontrivial, wave function. And the quantum world is filled with materials composed of the latter.

But until now, the quantum geometry of wave functions could only be inferred theoretically, or sometimes not at all. And the property is becoming more and more important as physicists find more and more quantum materials with potential applications in everything from quantum computers to advanced electronic and magnetic devices.

The MIT team solved the problem using a technique called angle-resolved photoemission spectroscopy, or ARPES. Comin, Kang, and some of the same colleagues had used the technique in other research. For example, in 2022 they reported discovering the "secret sauce" behind exotic properties of a new quantum material known as a kagome metal. That work, too, appeared in Nature Physics. In the current work, the team adapted ARPES to measure the quantum geometry of a kagome metal.

Close collaborations

Kang stresses that the new ability to measure the quantum geometry of materials "comes from the close cooperation between theorists and experimentalists."

The Covid-19 pandemic, too, had an impact. Kang, who is from South Korea, was based in that country during the pandemic. "That facilitated a collaboration with theorists in South Korea," says Kang, an experimentalist.

The pandemic also led to an unusual opportunity for Comin. He traveled to Italy to help run the ARPES experiments at the Italian Light Source Elettra, a national laboratory. The lab was closed during the pandemic, but was starting to reopen when Comin arrived. He found himself alone, however, when Kang tested positive for Covid and couldn't join him. So he inadvertently ran the experiments himself with the support of local scientists. "As a professor, I lead projects, but students and postdocs actually carry out the work. So this is basically the last study where I actually contributed to the experiments themselves," he says with a smile.

Research Report:Measurements of the quantum geometric tensor in solids

Research Report:Quantum geometry in solids measured using photo-emitted electrons

Related Links
Department of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Smarter memory next-generation RAM with reduced energy consumption
Osaka, Japan (SPX) Jan 10, 2025
Efforts to enhance computing memory systems have led to the development of various advanced memory types, each aiming to address the limitations of traditional random access memory (RAM). Magnetoresistive RAM (MRAM) is among these innovations, offering non-volatility, high speed, increased storage capacity, and greater durability. Despite these advantages, reducing energy consumption during data writing remains a critical challenge for MRAM technologies. A recent study published in Advanced Scienc ... read more

CHIP TECH
India unveils plans for 10 missions in 2025 after successful space-docking launch

Five Ways to Explore NASA's Portfolio of Technologies with TechPort 4.0

From commercial Moon landers to asteroid investigations, the year ahead

More NASA science and technology set for Lunar delivery with Firefly Aerospace

CHIP TECH
Bezos's Blue Origin targets Friday for first orbital launch

SpaceX sends up first Starlink mission of 2025

UAH Electric Propulsion Club seeks patent for experimental ion thruster

Bezos's Blue Origin poised for first orbital launch this week

CHIP TECH
Evidence exists for hidden water reservoirs and rare magmas on ancient Mars

University of Houston scientists solving meteorological mysteries on Mars

Frosty landscape captured at Mars' South Pole

Perseverance blasts past the top of Jezero Crater rim

CHIP TECH
China's human spaceflight program achieves key milestones in 2024

China's space journey continues apace

Shenzhou XIX crew completes successful spacewalk outside Tiangong station

China boosts Lunar and Mars mission capabilities with advanced Long March rockets

CHIP TECH
Chinese satellite network enhances maritime internet connectivity

Sidus Space launches LizzieSat-2 strengthening on-orbit satellite network

Space Flight Laboratory confirms launch and deployment of HawkEye 360 Cluster 11

NOIRLab releases complete educational resource for constellations

CHIP TECH
Developing printable droplet laser displays

Video game play gets frisky at CES gadget gala

Revealing new insights into single-atom metal alloy properties

Harnessing corrosion to create sustainable lightweight alloys

CHIP TECH
An autonomous strategy for life detection on icy worlds using Exo-AUV

Living in the deep, dark, slow lane: Insights from the first global appraisal of microbiomes in Earth's subsurface environments

Young planet's atmosphere challenges traditional formation models

New study uncovers variety in Arctic Ocean hydrothermal vent systems

CHIP TECH
Citizen scientists help decipher Jupiter's cloud composition

Texas A and M researchers illuminate the mysteries of icy ocean worlds

Jovian vortex hunter catalog reveals stunning insights into Jupiter's atmosphere

Juno identifies localized magma chambers driving Io's volcanic activity

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.