. 24/7 Space News .
TIME AND SPACE
Physicists make collimated atomic beam smaller, more precise
by Brooks Hays
Washington DC (UPI) Apr 23, 2019

Researchers at the Georgia Institute of Technology have managed to build a cascading silicon peashooter -- a smaller, more precise atomic beam collimator.

The technology could be used to produce exotic quantum phenomena for scientists to study or to improve devices like atomic clocks or accelerometers, a smartphone component.

"A typical device you might make out of this is a next-generation gyroscope for a precision navigation system that is independent of GPS and can be used when you're out of satellite range in a remote region or traveling in space," Chandra Raman, an associate professor of physics at Georgia Tech, said in a news release.

Atomic beam collimators feature a box of atoms, typically rubidium atoms. When heated, the atoms begin to bounce around energetically. A tube connected to the box allows atoms bouncing at just the right trajectory to escape.

The atoms bounce their way down the tube and are shot out the end of the barrel like a pellet from a shotgun. And like the spray of pellets from a shotgun, the atoms form a random spray.

"Collimated atomic beams have been around for decades," Raman said, "But currently, collimators must be large in order to be precise."

Researchers managed to shrink the technology to chip-scale by carving narrow channels on a silicon wafer using lithography, the technique used to etch computer chips. The channels work like a miniature row of shotgun barrels all pointing in the same direction. The tiny channels can shoot out a precise array of atoms.

To make the array even more precise, scientists sliced a pair of tiny gaps across the channels. Atoms bouncing along at a more askew angle bounce their way out of the channels, while atoms moving parallel continue on their straighter trajectory out the end of the barrels.

Unlike a laser beam, which is composed of massless photons, a beam of atoms produced by the collimator has mass, and thus also features momentum and inertia. That allows the technology to be utilized in gyroscopes, which are used to measure motion and changes in location.

Current chip-scale gyroscopes rely on microelectromechanical systems, which are accurate in the short term but become less precise over time -- or "drift" -- as they accumulate deformities from mechanical stress.

"To eliminate that drift, you need an absolutely stable mechanism," said Farrokh Ayazi, a professor of electrical and computer engineering at Georgia Tech. "This atomic beam creates that kind of reference on a chip."

Researchers suggest the new chip-scale collimated atomic beam -- described this week in the journal Nature Communications -- could be used to create Rydberg atoms. When atoms become excited by heat, their outermost electron expands its orbit. The electron behaves like the lone electron of a hydrogen atom, while the Rydberg atom acts as if it possesses only one proton.

"You can engineer certain kinds of multi-atom quantum entanglement by using Rydberg states because the atoms interact with each other much more strongly than two atoms in the ground state," Raman said.

"Rydberg atoms could also advance future sensor technologies because they're sensitive to fluxes in force or in electronic fields smaller than an electron in scale," Ayazi said. "They could also be used in quantum information processing."


Related Links
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Physicists aim to catch slow-decaying dark particle inside LHC
Washington (UPI) Apr 18, 2019
Scientists at the Large Hadron Collider have developed a new strategy for tracking down dark matter. Dark matter is apparently everywhere, binding galaxies together. But astronomers can only intimate dark matter's presence by measuring its gravitational effect on regular matter. As such, dark matter and dark energy remains poorly understood. "We know for sure there's a dark world, and there's more energy in it than there is in ours," LianTao Wang, a researcher at LHC and a professor of p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New concept for novel fire extinguisher in space

Multiple regenerative medicine payloads ready for ISS study

US Astronauts Have 15 Minutes to Evacuate to Russian Part of ISS If NH3 Leaks

Music for space

TIME AND SPACE
Incident on SpaceX pad could delay its first manned flight

SpaceX Says 'Anomaly' Happened During Fire Tests of Crew Dragon's Abort Engines

SpaceX to launch cargo resupply mission despite Crew Dragon mishap

NASA accelerates pace of Core Stage production with new tool

TIME AND SPACE
All-woman engineering team heads to NASA Mars competition

Things Are Stacking Up for NASA's Mars 2020 Spacecraft

A small step for China: Mars base for teens opens in desert

ExoMars carrier module prepares for final pre-launch testing

TIME AND SPACE
China opens Chang'e-6 for international payloads, asteroids next

China to enhance international space cooperation

China's commercial carrier rocket finishes engine test

China launches new data relay satellite

TIME AND SPACE
The Third Installment of the SpaceFund Reality (SFR) rating

ESA opening up to new ideas

Iridium Awarded Gateway Support and Maintenance Contract by the U.S. Department of Defense

Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

TIME AND SPACE
Debris of Satellite Destroyed by India May Threaten ISS - Russian MoD

RIT researcher collaborates with UR to develop new form of laser for sound

ESA oversees teaching of Europe's next top solderers

Raytheon awarded $28M for AN/SPY-6(V) radar integration, production

TIME AND SPACE
Oil-eating bacteria found at the bottom of the ocean

Necrophagy: A means of survival in the Dead Sea

Slime mold memorizes foreign substances by absorbing them

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

TIME AND SPACE
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.