. 24/7 Space News .
CHIP TECH
Physicists discover novel quantum effect in bilayer graphene
by Amanda Siegfried for UTDallas News
Dallas TX (SPX) Nov 08, 2021

University of Texas at Dallas physicists are studying the exotic behavior of bilayer graphene, which is a naturally occurring, two-atom thin layer of carbon atoms arranged in two honeycomb lattices stacked together. UT Dallas theorists, along with colleagues in Germany, have for the first time observed a rare phenomenon called the quantum anomalous Hall effect in bilayer graphene. Results were published Oct. 6, 2021, in the journal Nature.

Theorists at The University of Texas at Dallas, along with colleagues in Germany, have for the first time observed a rare phenomenon called the quantum anomalous Hall effect in a very simple material. Previous experiments have detected it only in complex or delicate materials.

Dr. Fan Zhang, associate professor of physics in the School of Natural Sciences and Mathematics, is an author of a study published on Oct. 6 in the journal Nature that demonstrates the exotic behavior in bilayer graphene, which is a naturally occurring, two-atom thin layer of carbon atoms arranged in two honeycomb lattices stacked together.

The quantum Hall effect is a macroscopic phenomenon in which the transverse resistance in a material changes by quantized values in a stepwise fashion. It occurs in two-dimensional electron systems at low temperatures and under strong magnetic fields. In the absence of an external magnetic field, however, a 2D system may spontaneously generate its own magnetic field, for example, through an orbital ferromagnetism that is produced by interactions among electrons. This behavior is called the quantum anomalous Hall effect.

"When the rare quantum anomalous Hall effect was investigated previously, the materials studied were complex," Zhang said. "By contrast, our material is comparably simple, since it just consists of two layers of graphene and occurs naturally."

Dr. Thomas Weitz, an author of the study and a professor at the University of Gottingen, said: "Additionally, we found quite counterintuitively that even though carbon is not supposed to be magnetic or ferroelectric, we observed experimental signatures consistent with both."

In research published in 2011, Zhang, a theoretical physicist, predicted that bilayer graphene would have five competing ground states, the most stable states of the material that occur at a temperature near absolute zero (minus 273.15 degrees Celsius or minus 459.67 degrees Fahrenheit). Such states are driven by the mutual interaction of electrons whose behavior is governed by quantum mechanics and quantum statistics.

"We predicted that there would be five families of states in bilayer graphene that compete with each other to be the ground state. Four have been observed in the past. This is the last one and the most challenging to observe," Zhang said.

In experiments described in the Nature article, the researchers found eight different ground states in this fifth family that exhibit the quantum anomalous Hall effect, ferromagnetism and ferroelectricity simultaneously.

"We also showed that we could choose among this octet of ground states by applying small external electric and magnetic fields as well as controlling the sign of charge carriers," Weitz said.

The ability to control the electronic properties of bilayer graphene to such a high degree might make it a potential candidate for future low-dissipation quantum information applications, although Zhang and Weitz said they are primarily interested in revealing the "beauty of fundamental physics."

"We predicted, observed, elucidated and controlled a quantum anomalous Hall octet, where three striking quantum phenomena - ferromagnetism, ferroelectricity and zero-field quantum Hall effect -can coexist and even cooperate in bilayer graphene," Zhang said. "Now we know we can unify ferromagnetism, ferroelectricity and the quantum anomalous Hall effect in this simple material, which is amazing and unprecedented."

Other authors of the Nature article include UT Dallas physics doctoral student Tianyi Xu and researchers from the University of Gottingen and the Ludwig Maximilian University of Munich.

Zhang's research is funded by the U.S. Army Combat Capabilities Development Command's Army Research Laboratory and the National Science Foundation.

Research Report: "Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene"


Related Links
School of Natural Sciences and Mathematics at UTDallas
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Creating a new family of semiconductor materials
Boston MA (SPX) Nov 04, 2021
MIT engineers report creating the first high-quality thin films of a new family of semiconductor materials. The feat, which lead researcher Rafael Jaramillo refers to as his "white whale" because of his obsession in pursuing it over the years, has the potential to impact multiple fields of technology if history repeats itself. The ability to create high-quality films of other families of semiconductors led to computers, solar cells, night-vision cameras, and more. When introducing a new material, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
High winds delay ISS astronauts' return to Earth

Astronauts to return from space station next week: NASA

New roles, combined offices for NASA Administrator Leadership Team

NASA, SpaceX delay ISS mission again for medical issue

CHIP TECH
Hypersonix to use Siemens' software in design of its hydrogen fuelled launchers

NASA prepares to fuel James Webb telescope for Dec. 18 launch

Major Artemis engine part arrives at Stennis for certification testing

NASA, SpaceX reschedule Crew-3 launch due to weather

CHIP TECH
Flight #15 - Start of the Return Journey

UNI Bremen involved in AMADEE-20 Mars Simulation

New Curtin study pinpoints likely home of Martian meteorites

Sol 3285: Oh So Close

CHIP TECH
Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

CHIP TECH
SpaceFund Invests in Rhea Space Activity

Geraldine Naja, Director of Commercialisation, Industry and Procurement

Amazon to launch two Project Kuiper satellites next fall

NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

CHIP TECH
Indian star Kamal Haasan to launch metaverse avatar

Healable carbon fiber composite offers path to long-lasting, sustainable materials

Securing data transfers with relativity

An artificial material that can sense, adapt to its environment

CHIP TECH
To find life on other planets, NASA rocket team looks to the stars

Rocky Exoplanets Are Even Stranger Than We Thought

Key role of the reactor surface in Miller's experiment on the molecular origin of life

Building planets from protoplanetary disks

CHIP TECH
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.