24/7 Space News
CHIP TECH
Physicists create five-lane superhighway for electrons
illustration only
Physicists create five-lane superhighway for electrons
by Elizabeth A. Thomson | Materials Research Laboratory
Boston MA (SPX) Jun 05, 2024

MIT physicists and colleagues have created a five-lane superhighway for electrons that could allow ultra-efficient electronics and more.

The work, reported in the May 10 issue of Science, is one of several important discoveries by the same team over the past year involving a material that is a unique form of graphene.

"This discovery has direct implications for low-power electronic devices because no energy is lost during the propagation of electrons, which is not the case in regular materials where the electrons are scattered," says Long Ju, an assistant professor in the Department of Physics and corresponding author of the Science paper.

The phenomenon is akin to cars traveling down an open turnpike as opposed to those moving through neighborhoods. The neighborhood cars can be stopped or slowed by other drivers making abrupt stops or U-turns that disrupt an otherwise smooth commute.

A new material
The material behind this work, known as rhombohedral pentalayer graphene, was discovered two years ago by physicists led by Ju. "We found a goldmine, and every scoop is revealing something new," says Ju, who is also affiliated with MIT's Materials Research Laboratory.

In a Nature Nanotechnology paper last October, Ju and colleagues reported the discovery of three important properties arising from rhombohedral graphene. For example, they showed that it could be topological, or allow the unimpeded movement of electrons around the edge of the material but not through the middle. That resulted in a superhighway, but required the application of a large magnetic field some tens of thousands times stronger than the Earth's magnetic field.

In the current work, the team reports creating the superhighway without any magnetic field.

Tonghang Han, an MIT graduate student in physics, is a co-first author of the paper. "We are not the first to discover this general phenomenon, but we did so in a very different system. And compared to previous systems, ours is simpler and also supports more electron channels." Explains Ju, "other materials can only support one lane of traffic on the edge of the material. We suddenly bumped it up to five."

Additional co-first authors of the paper who contributed equally to the work are Zhengguang Lu and Yuxuan Yao. Lu is a postdoc in the Materials Research Laboratory. Yao conducted the work as a visiting undergraduate student from Tsinghua University. Other authors are MIT professor of physics Liang Fu; Jixiang Yang and Junseok Seo, both MIT graduate students in physics; Chiho Yoon and Fan Zhang of the University of Texas at Dallas; and Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.

How it works
Graphite, the primary component of pencil lead, is composed of many layers of graphene, a single layer of carbon atoms arranged in hexagons resembling a honeycomb structure. Rhombohedral graphene is composed of five layers of graphene stacked in a specific overlapping order.

Ju and colleagues isolated rhombohedral graphene thanks to a novel microscope Ju built at MIT in 2021 that can quickly and relatively inexpensively determine a variety of important characteristics of a material at the nanoscale. Pentalayer rhombohedral stacked graphene is only a few billionths of a meter thick.

In the current work, the team tinkered with the original system, adding a layer of tungsten disulfide (WS2). "The interaction between the WS2 and the pentalayer rhombohedral graphene resulted in this five-lane superhighway that operates at zero magnetic field," says Ju.

Comparison to superconductivity
The phenomenon that the Ju group discovered in rhombohedral graphene that allows electrons to travel with no resistance at zero magnetic field is known as the quantum anomalous Hall effect. Most people are more familiar with superconductivity, a completely different phenomenon that does the same thing but happens in very different materials.

Ju notes that although superconductors were discovered in the 1910s, it took some 100 years of research to coax the system to work at the higher temperatures necessary for applications. "And the world record is still well below room temperature," he notes.

Similarly, the rhombohedral graphene superhighway currently operates at about 2 kelvins, or -456 degrees Fahrenheit. "It will take a lot of effort to elevate the temperature, but as physicists, our job is to provide the insight; a different way for realizing this [phenomenon]," Ju says.

Very exciting
The discoveries involving rhombohedral graphene came as a result of painstaking research that wasn't guaranteed to work. "We tried many recipes over many months," says Han, "so it was very exciting when we cooled the system to a very low temperature and [a five-lane superhighway operating at zero magnetic field] just popped out."

Says Ju, "it's very exciting to be the first to discover a phenomenon in a new system, especially in a material that we uncovered."

This work was supported by a Sloan Fellowship; the U.S. National Science Foundation; the U.S. Office of the Under Secretary of Defense for Research and Engineering; the Japan Society for the Promotion of Science KAKENHI; and the World Premier International Research Initiative of Japan.

Research Report:Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene

Related Links
Condensed Matter Experiment (CMX)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Intel unveils new chip tech in AI battle with Nvidia, AMD
Taipei (AFP) June 4, 2024
US chip titan Intel on Tuesday struck a defiant tone in the face of strong challenges from rivals Nvidia, AMD and Qualcomm, unveiling technologies it said would lead the artificial intelligence revolution. For decades, Intel has dominated the market for the chips that run everything from laptops to data centres. But in recent years, its competitors, especially Nvidia, have soared ahead on specialised AI processors. During a keynote speech at Taiwan's Computex expo, CEO Pat Gelsinger introduced I ... read more

CHIP TECH
Take three for Boeing Starliner crewed launch attempt

Cargo Ship Departs, Two Rockets Near Launch During Busy Day on Station

Russian Progress 88 cargo spacecraft launched to ISS

MDA Space Partners with Starlab Space in Commercial Space Station Venture

CHIP TECH
Boeing Starliner spacecraft springs more leaks on way to ISS

Boeing's Starliner joins select club of crewed US spaceships

Boeing Starliner's first astronaut mission scheduled to launch Wednesday

YPSat Prepared for Ariane 6 Inaugural Flight

CHIP TECH
Martian meteorites offer insights into Red Planet's structure

South Korea targets Mars mission with new space centre

Western geologists test instrument for Mars rover mission in search for life

RNA study reveals potential for life in Mars' extreme environments

CHIP TECH
Shenzhou 18 crew conducts first spacewalk

Zebrafish on China's space station reported to be in good condition

China sends experimental satellite into orbit with Long March 4C rocket

International Support for China's Chang'e-6 Lunar Mission

CHIP TECH
Starling spacecraft swarm completes primary mission

Sidus Space AI Platform Achieves First Data Transmission from LizzieSat-1

Wallaroo.AI Joins US Space Force SDA TAP Lab Apollo Accelerator Program

Innovative Startups Join South Australia's Space Ecosystem

CHIP TECH
European Team Validates Flow Models in Zero Gravity

What is the European sovereign cloud?

Australian rare earths firm says data leaked day after Chinese investors blocked

First metal 3D printing performed on ISS

CHIP TECH
NASA selects industry proposals to advance technologies for Habitable Worlds Observatory

Starless and forever alone: more 'rogue' planets discovered

Astronomers Discover 15 New Exoplanets and Measure Mass of 126 Others

NASA's TESS Finds Intriguing World Sized Between Earth, Venus

CHIP TECH
New Earth-Based Telescope Images of Jupiter's Moon Io Match Spacecraft Quality

Peering into Pluto's hidden ocean

Probing for Rocks in an Ice Giant's Core

NASA's Juno captures detailed images of Europa's surface

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.