. 24/7 Space News .
Physicists Observe New Property of Matter

Excitons tend to self-organize into an ordered array of microscopic droplets, like a miniature pearl necklace. The wave-like interference pattern (right) reveals the spontaneous coherence of excitons. Image Credit: UCSD.
by Staff Writers
Los Angeles CA (SPX) Nov 06, 2006
Physicists at the University of California, San Diego have for the first time observed the spontaneous production of coherence within "excitons," the bound pairs of electrons and holes that enable semiconductors to function as novel electronic devices.

Scientists working in the emerging field of nanotechnology, which is finding commercial applications for ultra-small material objects, believe that this newly discovered property could eventually help the development of novel computing devices and provide them with new insights into the quirky quantum properties of matter.

Details of the new finding appear in a paper published in the November 3 issue of the journal Physical Review Letters by a team of four physicists at UCSD working in collaboration with a materials scientist at UC Santa Barbara.

The effort was headed by Leonid Butov, a professor of physics at UCSD who in 2002 led a similar team at the Lawrence Berkeley National Laboratory to the discovery that excitons, when made sufficiently cold, tend to self-organize into an ordered array of microscopic droplets, like a miniature pearl necklace (shown in figure).

"What is coherence and why is it so important?" said Butov. "To start with, modern physics was born by the discovery that all particles in nature are also waves. Coherence means that such waves are all 'in sync.' The spontaneous coherence of the matter waves is the reason behind some of the most exciting phenomena in nature such as superconductivity and lasing."

"A simple way to visualize coherence is to imagine cheering spectators at a stadium making 'a wave'," added Michael Fogler, an assistant professor of physics at UCSD and a co-author of the paper. "If the top rows get up and down at the same time as the bottom ones, the rows are mutually coherent. In turn, coherence is spontaneous when the cheering is done on the spectator's own initiative and is not orchestrated by the directions of an external announcer."

A famous example of spontaneous coherence of matter waves is the Bose-Einstein condensate, which is a state predicted by Einstein some 80 years ago. This new form of matter was eventually created in 1995 by University of Colorado physicists and regarded as so noteworthy the scientists were awarded the 2001 Nobel Prize in Physics. The Bose-Einstein condensate is a gas of atoms so dense and cold that their matter waves lose their individuality and condense into a "macroscopic coherent superatom wave."

Atomic Bose-Einstein condensation occurs at temperatures near the absolute zero. However, excitons are expected to exhibit the same phenomenon at temperatures that are million times higher (although admittedly still rather low on a common scale, some hundred times lower than the room temperature). Remarkably, this is a range of temperatures where Butov and his team have observed the onset of exciton coherence.

"Excitons are particles that can be created in semiconductors, in our case, gallium arsenide, the material used to make transistors in cell phones," said Fogler. "One can make excitons, or excite them, by shining light on a semiconductor. The light kicks electrons out of the atomic orbitals they normally occupy inside of the material. And this creates a negatively charged 'free' electron and a positively charged 'hole.'"

The force of electric attraction keeps these two objects close together, like an electron and proton in a hydrogen atom. It also enables the exciton to exist as a single particle rather than a non-interacting electron and hole. However, it can be the cause of the excitons' demise. Since the electron and hole remain in close proximity, they sometimes annihilate one another in a flash of light, similar to annihilation of matter and antimatter.

To suppress this annihilation, Butov and his team separate electrons and their holes in different nano-sized structures called quantum wells.

"Excitons in such nano-structures can live a thousand or even a million times longer than in a regular bulk semiconductor," said Butov. "These long-lived excitons can be prepared in large numbers and form a high density exciton gas. But whether excitons can cool down to low temperatures before they recombine and disappear has been a key question for scientists."

"What we found was the emergence of spontaneous coherence in an exciton gas," added Butov. "This is evidenced by the behavior of the coherence length we were able to extract from the light pattern (as shown in the figure) emitted by excitons as they recombine. Below the temperature of about five degrees Kelvin above absolute zero, the coherence length becomes clearly resolved and displays a steady and rapid growth as temperature decreases. This occurs in concert with the formation of the beads of the 'pearl necklace.' The coherence length reaches about two microns at the coldest point available in the experiment."

Other members of the research team were UCSD students Sen Yang and Aaron Hammack and Arthur Gossard, a professor in UC Santa Barbara's materials science department. The research project was supported by grants from the National Science Foundation, U.S. Army Research Office and the Hellman Fund.

Related Links
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Physicists Study Remote Quantum Networks
Pasadena (UPI) Nov 01, 2006
U.S. physicists say the operations of two remote quantum systems can be synchronized so changes in one system are conditional on what occurs in the other. The research team led by Jeff Kimble of the California Institute of Technology says the synchronization provides a level of real-time control that hasn't previously been achieved.







  • India Mulls First Manned Space Mission
  • Space Race Realities
  • Chinese Businessmen Plan Space Trip
  • Lost In Space No More

  • A Mission To Mars - Part Two
  • Minerals And Mountains On Mars
  • Russian Dreams Of Reaching Mars First
  • Mars Science Laboratory Shakedown In The High Arctic

  • Sea Launch Successfully Delivers Latest XM Radio Satellite To Orbit
  • Russian Space Co. To Launch At Least 11 Satellites By 2009
  • ATK Receives $17.5 Million Contract For CASTOR 120-R Motors
  • MetOp Weather Satellite Reaches Polar Orbit

  • NASA Snow Data Helps Maintain Largest And Oldest Bison Herd
  • Australia And China To Put Eyes In The Sky To Monitor Climate Change
  • Esperanza Fire Captured By Aqua Satellite
  • Start of Operations Phase For ALOS And Data Provision To The Public

  • Making Old Horizons New
  • Scientist Who Found Tenth Planet Discusses The Downgrading Of Pluto
  • New Horizons Spacecraft Snaps Approach Image of the Giant Planet
  • Does The Atmosphere Of Pluto Go Through The Fast-Freeze

  • Stars Churning Away In Large Magellanic Cloud
  • Latest Views Of The V838 Monocerotis Light Echo From Hubble
  • Astronomers Weigh 200-Million-Year-Old Baby Galaxies
  • Star Ends Infancy Abruptly

  • Chinese Lunar Orbiter Prototype On Display At Air Show
  • No Lunar Polar Ice Sheets Found In High Resolution Radar Images
  • New Russian Spaceship Will Be Able To Fly To Moon - Space Corp
  • Ice Store At Moon's South Pole Is A Myth

  • China Starts To Build Own Satellite Navigation System
  • Lockheed Martin Announces Experienced Team For Pursuit Of ADS-B Program
  • New Airdrop System Offers More Precision From Higher Altitudes
  • India May Quit EU-led GPS project

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement