. | . |
Photons and electrons one on one by Staff Writers Zurich, Switzerland (SPX) Mar 23, 2020
The photoelectric effect, whereby photons impinging on matter cause the emission of electrons, is one of the quintessential effects of quantum mechanics. Einstein famously explained the key mechanism underlying the phenomenon in 1905, earning him the 1921 Nobel Prize in Physics. He built on a concept introduced merely five years earlier by Max Planck: electromagnetic energy is absorbed and emitted only in discrete packets - that is, in quanta. The quantum concept revolutionised physics. The photoelectric effect, for its part, has been explored in ever greater detail, and is nowadays exploited in applications ranging from solar cells to night-vision goggles. A shift in our understanding of the effect came in the past decade or so. Laser experiments made it possible to look directly at the intricate quantum dynamics that unfold at the attosecond timescale as electrons are removed from their parent system when they interact with light. However, time-resolved measurements of the photoionization process in its arguably purest form - the absorption and emission of single photons by a single unbound electron - remained elusive. Until now. Writing in the journal Optica, Jaco Fuchs and colleagues in the Ultrafast Laser Physics group of Prof. Ursula Keller at the Institute of Quantum Electronics, working with collaborators in the US, Austria and Spain, report an experiment in which they measured for the first time how the absorption and emission of single photons alters the dynamics of an electron that is not bound to an atomic nucleus, but still feels its Coulomb potential. Introducing a novel experimental protocol, they found that the dynamics depends on the angular momentum of the photoionized electron: they measured a delay of up to 12 attoseconds between outgoing s- and d-electrons in helium. This is a subtle yet unmistakable signature of underlying quantum-mechanical effects. And they observed fundamental phenomena of classical origin, too: they measured phase changes that reflect that in d-electrons the outward propagation is slower than in s-electrons. This can be explained by the larger fraction of rotational energy and hence a lower radial energy in d-electrons.
Extracting the contribution of single photons The measurement of these attosecond-scale time delays typically involves at least two photons, making it exceptionally difficult to extract the contribution of single photons. Fuchs et al. now found a way to do just that. In their case two photons are involved too, one in the extreme ultraviolet (XUV) and the other in the infrared (IR) range. But they devised a fitting procedure that enabled them to extract from their high-quality data the amplitudes and relative phases of all the quantum pathways through which photoionsation proceeds in their system. In this way they were able to isolate the different contributions of the IR photons, which are the ones inducing transitions in an unbound electron (whereas the XUV photons ionise the atom, by transferring an electron from a bound state to the continuum).
Direct measurement of delays arising from Bremsstrahlung The experimental results are well reproduced by two independent theoretical methods Fuchs and colleagues employed. These simulations also provide evidence that some of the observed effects are universal, in the sense that they are independent of the atomic species of the parent ion. This work illustrates that also 115 years after Einstein's seminal work, the photoelectric effect does not cease to inspire. The tools introduced by Fuchs and co-workers provide new experimental capabilities for studying photoionization dynamics, both in atoms and in small molecules. Such studies could in turn provide a fuller understanding of photoemission time delays, in particular in the presence of interactions in the intermediate-to-long range.
Longest microwave quantum link Zurich, Switzerland (SPX) Mar 10, 2020 Collaboration is everything - also in the quantum world. To build powerful quantum computers in the future, it will be necessary to connect several smaller computers to form a kind of cluster or local network (LAN). Since those computers work with quantum mechanical superposition states, which contain the logical values "0" and "1" at the same time, the links between them should also be "quantum links". The longest such link to date based on microwaves, at five metres long, was recently built in t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |