![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Munich, Germany (SPX) Nov 23, 2015
A key issue with lithium ion batteries is aging. It significantly reduces their potential storage capacity. To date, very little is known about the causes of the aging effects. Scientists from the Department of Technical Electrochemistry and the Research Neutron Source FRM II at the Technical University of Munich (TUM) have now come a step closer to identifying the causes in their latest experiments. Lithium ion batteries with graphite anodes are a relatively new development. They were patented only in 1989 and have been deployed in electrical devices since 1991. Since then, they have been a success worldwide and do their service not only in small electrical devices but also in electric cars, airplanes and even locomotives. In the future they will also serve as intermediate storage with up to megawatt capacities. Batteries with graphite anodes suffer their first significant loss of capacity during the initial charging cycle, the formation step. A battery loses up to ten percent of its capacity in the process. Each additional charge-discharge cycle reduces storage capacity further, if only insignificantly. Capacity is also lost through the mere storage of batteries - especially above room temperature. Physics has come up with a number of ideas about the nature of these aging effects, but no one has yet found the definitive explanation for them. TUM scientists at the Department of Technical Electrochemistry and from the FRM II have now come a good deal closer to closing this knowledge gap in their latest experiments.
Detective work using X-rays and neutrons They deployed these methodologies to analyze the behavior of batteries with graphite anodes and nickel-manganese-cobalt cathodes, so-called NMC cells, at various temperatures. NMC cells are popular in electromobility since they have a large capacity and can theoretically handle charging voltages up to just under five volts. However, above 4.4 volts aging effects increase strongly. Using X-ray diffraction, the scientists investigated the loss of active lithium over multiple charging cycles. They used impedance measurements to register the increasing resistance in the battery cells. Neutron activation analysis ultimately facilitated the accurate determination of extremely minute quantities of transition metals on the graphite electrodes.
Mechanisms of capacity reduction The research group determined two key mechanisms for the loss of capacity during operation: The active lithium in the cell is slowly used up in various side reactions and is thus no longer available. The process is very temperature dependent: At 25 C the effect is relatively weak but becomes quite strong at 60 C. When charging and discharging cells with a higher upper cut off potential (4.6 V), cell resistance increases rapidly. The transition metals deposited on the anode may increase the conductivity of the pacifying layer and thereby speed up the decomposition of the electrolyte.
On the road to better lithium ion batteries I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, and H. A. Gasteiger; Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance; Journal of The Electrochemical Society, 162, A2737 (2015); DOI: 10.1149/2.0721514jes
Related Links Technical University of Munich Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |