. 24/7 Space News .
SOLAR DAILY
Perovskite solar cell with ultra-long stability
by Staff Writers
Julich, Germany (SPX) Dec 20, 2021

Dr. Yicheng Zhao in front of High Throughput Research Equipment holding Perovskite Solar cell and film samples at the Helmholtz Institute Erlangen-Nuremberg, part of Forschungszentrum Julich.

Perovskites are the great hope for further increasing the efficiency of solar modules in the future. Until now, their short service life has been considered the biggest hurdle to their practical use, but this could soon change. In the current issue of the renowned journal Nature Energy, researchers from the Helmholtz Institute Erlangen-Nuremberg of the Forschungszentrum Julich have presented a variant that stands out for its special stability. In tests at elevated temperature and illumination over 1450 hours of operation, the perovskite-based cell retained 99 percent of its initial efficiency.

A characteristic feature of perovskites is a specific crystal structure. Numerous material combinations of different atoms and molecules are possible, some of which exhibit ferroelectric, superconducting or photovoltaic properties. Although known since the early 19th century, the class of materials was only recently discovered for photovoltaics. Just 10 years of research were needed to raise the efficiency to the level of conventional silicon solar cells at an unprecedented rate.

Compared to silicon crystals, perovskites have several decisive advantages: they can be produced easily, cost-effectively and in an energy-saving manner. The layers of perovskite cells, which are only a few hundred nanometers thick, can also be well applied to conventional silicon cells. While silicon-based technology is already considered mature, such "tandem solar cells" offer new opportunities to further improve the efficiency of solar cells.

A question of stability
"The Achilles' heel of perovskite solar cells is their low durability," explains Prof. Christoph Brabec of the Helmholtz Institute Erlangen-Nuremberg (HI ERN) at Forschungszentrum Julich. "Classic silicon modules are quite durable. Even after more than 20 years in practical use, they lose little of their performance." Solar cells made of perovskite, on the other hand, usually lose efficiency after just a few days or weeks. Early cells could literally be watched aging, with efficiency dropping within seconds or minutes of turning on the lights in the lab.

"The solar cell we have now presented in Nature Energy, on the other hand, impresses with its exceptional stability. The values are certainly among the best ever measured for a planar perovskite solar cell in a long-term test," Brabec said. The illuminated cell had to survive 1450 hours at elevated temperatures around 65 degrees Celsius in the laboratory and remained largely stable throughout the test period. At the end, it still had 99 percent of its initial efficiency. "Long-term prediction is always difficult. But the perovskite solar cell we have now developed could certainly be operated for more than 20,000 hours under normal circumstances," estimates Prof. Brabec.

Success through high throughput
The result is no accident. In their search for the right material, the researchers systematically tested hundreds of different perovskite mixtures for their suitability using high-throughput methods. The researchers then used the best ones to build their cell. "Even if you only rely on proven components, you come up with tremendous numbers of possible compositions that we can produce and test automatically using our methods. In other studies, there are sometimes even significantly more," explains Dr. Yicheng Zhao, who played a key role in the scientific investigations. "That is why we need to use a systematic approach to identify the best material combinations."

Another important optimization step concerns the stable contacts of the perovskite within the cell, which is built up in several thin layers. The ionic dopants or metal oxide nanoparticles commonly used to contact the cell tend to undergo secondary reactions at higher temperatures. This reactions can even lead to corrosion of the metal electrodes, as the researchers at HI ERN were able to demonstrate through measurements and scanning electron microscopy. Contact and electrical conductivity thus deteriorate at an early stage.

"To improve stability at the contact point, we packed the entire electrode in a kind of protective shell," Zhao said. A new double-layer polymer structure, with the bottom side undoped and the top side doped with a non-ionic dopant, protects against degradation and ensures that the contact is maintained. On the one hand, this architecture protects the very sensitive interface to the perovskite, and on the other hand, it shows exceptionally stable conductivity, even at elevated temperatures.

For the future, the HI ERN researchers are now aiming for further efficiency improvements. "With an efficiency of 20.9 percent, the tested cell does not yet fully exploit the potential. 24 to 25 percent should be possible in the near future," explains Yicheng Zhao.

Research Report: "A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400?hours operational stability at elevated temperatures."


Related Links
Helmholtz Institute Erlangen-Nurnberg for Renewable Energy
All About Solar Energy at SolarDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR DAILY
New device advances commercial viability of solar fuels
Berkeley CA (SPX) Dec 20, 2021
A research team has developed a new artificial photosynthesis device with remarkable stability and longevity as it converts sunlight and carbon dioxide into two promising sources of renewable fuels - ethylene and hydrogen. The researchers' findings, which they recently reported in the journal Nature Energy, reveal how the device degrades with use, then demonstrate how to mitigate it. The authors also provide new insight into how electrons and charge carriers called "holes" contribute to degradatio ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Major tech firms join Consumer Electronics Show exodus

Russia ready to 'fight' for space tourism supremacy

NASA selects second private astronaut mission to Space Station

Space Habitat Market size to grow by USD 94.92 Bn

SOLAR DAILY
FAA approves Launch Site Operator License for Spaceport Camden

Science fiction revisited: Ramjet propulsion

SpaceX launches Turksat-5b

Huayi-1 suborbital rocket makes debut flight

SOLAR DAILY
Out of the Shadows of the Maria Gordon notch: Sols 3328-3329

ExoMars discovers hidden water in Mars' Grand Canyon

NASA's Ingenuity Mars Helicopter Reaches a Total of 30 Minutes Aloft

NASA's Perseverance Mars Rover Makes Surprising Discoveries

SOLAR DAILY
New technologies make Chinese astronauts' in-orbit lives easier

On they march as China records 401st flight of Long March rocket family

China's Long March carrier rocket embarks on 400th mission

First crew of space station provide a full update on China's progress

SOLAR DAILY
Kepler Communications announces testing of Aether Network with Spire Global

New space economy ready to lift off thanks to Finnish innovation

Kleos' Patrol Mission Satellites Ready and Shipped to Launch Site

Europe opens up a new space to commercial services

SOLAR DAILY
Selective separation could help alleviate critical metals shortage

Step forward in quest to develop living construction materials and beyond

Oracle to buy medical records firm Cerner for $28.3 bn

The language of holography: Problems and hints for solving them

SOLAR DAILY
Could acid-neutralizing life-forms make habitable pockets in Venus' clouds?

Founding members of world's first independent space science mission confirmed

Life arose on hydrogen energy

Stellar "ashfall" could help distant planets grow

SOLAR DAILY
Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry

Planet decision that booted out Pluto is rooted in folklore, astrology

Are Water Plumes Spraying from Europa

Science results offer first 3D view of Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.